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Fig 1, J.Vega et al, 2022, Nature Physics
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▪ Definition and general process

❏ Definition

• The evolution of an unstable current profile → growth of a tearing mode 

• A sudden relaxation of the equilibrium: current profile flatten + loss of confinement 

+ collapse of 𝑇𝑝𝑙𝑎𝑠𝑚𝑎→ Thermal quench (TQ)

• The total current decays → Current quench (CQ)

• 𝑬𝝓 ↑ associated with 𝑍𝑝𝑙𝑎𝑠𝑚𝑎 ↑: generates runaway electrons → Large current

• Loss of plasma energy + current decay

• Global and sudden losses of plasma with large amount of energy loss.

• 4 phases: Pre-precursor phase → Precursor phase → Fast phase → Current phase

❏ Process of disruption

Introduction – Disruption



Introduction – Disruption Prediction
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▪ Importance of disruption prediction

❏ Severeness of the disruption in tokamak device

• Disruptions→ erosion / melting / structural damage in Tokamak device

• Predicting disruption well in advance is important to mitigate and to avoid disruptions.

❏ Related work

• Physics-based approaches by MHD theory and simulation: DECAF (2020)

• Data-driven approaches (ML/DL) can be alternative for disruption predictor.

❏ Various attempts based on data-driven approach

• Kates et al (2019): Fusion recurrent neural networks in JET and D3D

• Croonen et al (2020): SVM, RF, GBT → Ensemble learning  

• Ferreiral et al (2020): CNN models with Plasma tomography (image) in JET

• R.M.Churchil et al (2021): Dilated TCN with ECE profiles in D3D

• E.Aymerich et al (2022): CNN with plasma profile(Bolometer diagnostic, Thomson scattering) in JET
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▪ Related work: Deep learning application for multimodal data in disruption prediction

❏ Disruption Prediction and Analysis through Multimodal Deep Learning in KSTAR [Jinsu Kim et al., FED, submitted) 

• Multimodal learning: Meta-learning for 2 or more different modalities of data (e.g. Video data + time-series data)

→ Improved capabilities + Robustness to data noise + Improved accuracy by multi-modalities

• Data structure: Video (IVIS Image sequence) + Time-series (0D parameters)

→ Video data:  Spatial-temporal information including time-varying position and shape of plasma

→ 0D parameters: Physical attributed features for state of plasma

Introduction – Disruption Prediction
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❏ Overfitting

Introduction – Disruption Prediction

▪ Issues on disruption predictions using deep learning : Overfitting

Training loss curve for Transformer models with EFIT data only

Models cannot be optimized 
at all after a few training 

epochs: low generalization

• Low generalization due to the tendency of fitting closer to the training data than to the underlying distribution

• ↑ model complexity or few data compared to model complexity → generalization error ↑

• Generalization: how to discover general patterns from given data

• Underfitting: limiting the reduction of training error due to the low complexity or small data

• ↑ modalities → ↑ capacities + representation but sub-optimal + overfitting causes due to different generalization rates

Pictures from https://www.analyticsvidhya.com/blog/2021/06/complete-guide-to-
prevent-overfitting-in-neural-networks-part-1/

Overfitting
Fitting to the data noise rather than 

the underlying distribution



Page 7

❏ Overconfidence

Introduction – Disruption Prediction

▪ Issues on disruption predictions using deep learning : Overconfidence

• Overconfident prediction when neural networks provide a confidence interval

• ReLU networks susceptible to O.O.D examples (Guo et al., 2017), always overconfident far away from the data (Hein et al., 2019)

• The neural networks can not be aware of their predictions’ uncertainty based on general approach

False alarms: overconfidence of models
Multi-modality can be one of the 

solutions, but too expensive

Overconfidence

Pictures from https://jramkiss.github.io/2020/07/29/overconfident-nn/
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▪ How to handle these issues

• Learning uncertainties is needed → Bayesian approach should be applied!

▪ Stochastic neural networks trained by variational inference: computation of the uncertainties + scalability + small dataset

▪ Maximize a Posterior (MAP): Maximize Likelihood Estimation (MLE) + Regularization, robustness to overfitting 

Introduction – Bayesian Neural Network

• Conventional approach (Frequentist view): weights of the neural networks are trained by maximum likelihood estimation (MLE)

• Weights as random variables: Finding the optimal weights = Maximum a posteriori (MAP) weights

𝑊𝑀𝐿𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑊 log𝑃(𝐷|𝑊) 𝑊𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑊 log𝑃 𝑊 𝐷 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑊 log𝑃 𝐷 𝑊 + 𝑙𝑜𝑔𝑃(𝑊)

• Bayesian by Backpropagation (Charles Blundell et al, 2015)

• Variational inference: intractable in general cases, but variational approximation by 

MC sampling can reduce the computational cost and handle intractability.

𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝐾𝐿[𝑞 𝑤 𝜃 | 𝑃 𝑤 − 𝐸𝑞 𝑙𝑜𝑔𝑃 𝐷 𝑊 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝐹(𝐷, 𝜃)

Charles Blundell et al, 2015

𝐹 𝐷, 𝜃 =log𝑞 𝑤 𝜃 − 𝑙𝑜𝑔𝑃 𝑤 − 𝑙𝑜𝑔𝑃(𝐷|𝑤)
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▪ Computation of the uncertainty

• Aleatoric uncertainty vs Epistemic uncertainty

• Aleatoric uncertainty: data uncertainty, due to the random nature of the physical systems  

• Epistemic uncertainty: model uncertainty, related to the probabilistic distribution of the model weights, due to the lack of 

knowledge of the systems (a low generalization of the model)

• Aleatoric uncertainty decreases with the increase of dataset, however epistemic uncertainty requests to refine the model

• We can calculate epistemic uncertainty from the Bayesian approach, thus we can get more accurate and reliable disruption 

prediction with considering Epistemic uncertainty.

Introduction - uncertainties

𝑉𝑎𝑟𝑞 𝑃 𝑦∗ 𝑥∗ = 𝐸𝑞 𝑦
∗𝑦∗𝑇 − 𝐸𝑞 𝑦

∗ 𝐸𝑞 𝑦
∗ 𝑇 = ∫ [𝑑𝑖𝑎𝑔 𝐸𝑝 𝑦

∗ − 𝐸𝑝 𝑦
∗ 𝐸𝑝 𝑦

∗ 𝑇𝑞𝜃 𝑤 𝐷 𝑑𝑤 + ∫ 𝐸𝑝 𝑦∗ − 𝐸𝑞 𝑦
∗ 𝐸𝑝 𝑦

∗ − 𝐸𝑞 𝑦
∗

𝑇
𝑞𝜃 𝑤 𝐷 𝑑𝑤

Aleatoric uncertainty Epistemic uncertainty

Aleatoric uncertainty computed by Bayesian VGG on MNIST dataset, Kumar Shridhar et al, 2019 Simple computation of aleatoric uncertainty and epistemic uncertainty, Kumar Shridhar et al, 2019 
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Introduction - strategies

▪ Aims of this research

▪ Key concepts

• Prediction: Forecasting before thermal quench (minimum: 40ms)

• High accuracy: Minimizing false alarm rates and missing alarm rates

• Cause estimation: Direct input feature importance computation for inferring causes

• Bayesian neural network: Stochastic neural network for covering overconfidence

• Integrated Gradients: Gradient-based feature importance computation algorithm

• Dilated TCN: Model architecture for handling multi-time scale data
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Introduction - strategies
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▪ Expansion of the signals for enhancing the prediction accuracy

• Causes of disruption (J.A.Wesson, Nucl.Fusion, 1989)

Development – Dataset Construction

▪ Density limit disruption: Radiative contraction + Precursor instabilities + Energy quench + Current decay

▪ Low q-limit disruption: Fast rise of n=1 perturbed magnetic field + Mode lock

▪ Current rise disruption: Peaking of the current profile + Sawtooth + Density limit disruption

▪ Vertical instability disruption: Elongated plasma forced by strong Lorentz force due to halo current and disrupted

• Disruption classification

▪ Mode lock: LM signals

▪ H/L transition: H89

▪ Density limit: Radiation / density profiles

▪ High radiated power: H-alpha

▪ Internal transport barrier: 1D-profiles of temperature / density

▪ Vertical displacement: Error fields, HCM(Halo current) Input feature for disruption predictor 
from B.Cannas et al, 2006 
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▪ Expansion of the signals for enhancing the prediction accuracy

• Input features generally used in ML / DL

Julian Kates et al, 2019 
Jayakumar Chandrasekaran et al, 2022 J.Croonen et al, 2020

▪ EFIT: q95, Ip, P, li, B-field, R, a, ….

▪ Diagnostic signals: Mirnov coil, LM amplitude,…

• Disruption classification: Tabular dataset is enough 

• Disruption prediction: Tabular dataset is not enough, Time-series dataset is needed (Sequential data)

𝑋 ∈ 𝑅𝐷

𝑋 ∈ 𝑅𝑇𝑥𝐷

Development – Dataset Construction

KSTAR environment = partially observable system 

→ Sequential data
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▪ Expansion of the signals for enhancing the prediction accuracy

• EFIT

Development – Dataset Construction

• ECE • Diagnostic data

Time intervals: 50 ms

Data points (sequence length): 10

Time intervals: 10 ms

Data points (sequence length): 50

Time intervals: 10 ms

Data points (sequence length): 50
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▪ Effective model architectures for multi-scale time series data

• Deep convolutional neural networks with dilated convolutions

▪ Convolution layer: A layer that computes convolution products with different filters to extract the feature maps

▪ Dilated convolution: extends the receptive field by adding zero padding (spacing) in kernel filters 

Development – Dilated temporal convolution network

Figure 1 from R.M. Churchill, 2019

Convolution process with dilated rate = 1 Convolution process with dilated rate = 2

Adding zero padding to 

extend the receptive field

*Receptive field: A size of input neurons’ space that 

affects one neuron of the output layer

𝒚 𝒏 = σ𝒊𝒘[𝒊]𝒙[𝒏 − 𝒅 ̇𝒊]
w: 1D dilated convolution filter of length k, x: input

▪ Temporal convolution networks with dilated convolutions can effectively 

separate out structures in multi-scale data.

▪ Long sequences can be covered by the increase of receptive fields due to 

dilated convolutions
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▪ Gradient-based feature selection algorithm

• Integrated Gradients

Development – Integrated Gradients

▪ The problem of attributing the prediction of a neural network to its input features can be approximated by Integrated Gradients.

▪ Gradients of the output with respect to the input = a natural analog of the model coefficient, but breaks sensitivity

Gradsi
𝛾
x = ∫

𝜕𝐹 𝛾 a

𝜕𝛾 a

𝜕𝛾i a

𝜕a
da : Path integrated gradients

𝜕𝐹 x

𝜕xi
: Gradient of F along the i-th dimension at x (i-th feature)

xi − xi′ ×
1

m
σ
𝜕𝐹 x’+

k

m
×(x−x’)

𝜕xi
: Approximation of path integrated gradients

Sensitivity related to changes in features = Feature importance

Input data

Neural Network

(Disruption prediction model)

Forward 
computation

𝑦𝑖 =
exp(𝑜𝑗)

σ exp(𝑂𝑗)
: 𝑃(𝑦𝑖|𝑥𝑖, 𝜃, 𝐷)

Output

Backward 
computation

𝜕𝑦 𝑥

𝜕𝑥𝑖

Gradient related to input feature i

𝑥′ +
𝑘

𝑚
(𝑥 − 𝑥′)

Differentiate input

K-steps computation for enhancing the approximation
xi − xi′ ×

1

m
σ
𝜕𝐹 x’+

k

m
×(x−x’)

𝜕xi
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▪ Model performance with different prediction times compared with previous research

• Evaluation of disruption prediction models in advance of the current quench

▪ Models: Transformer, CNN-LSTM, MLSTM-FCN, DilatedTCN

▪ Input features: EFIT + Diagnostic data (same as previous slides)

▪ Data configuration (Features, sequence length, train-test set) and training strategies (Focal Loss + Deferred Re-weighting): equivalent

Results – Overall model performance

Transformer with prediction time equal to 50 ms DilatedTCN with prediction time equal to 50 ms

Better generalization with DilatedTCN

T
ra

in
s
e
t

T
e

s
ts

e
t
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▪ Model performance with different prediction times compared with Bayesian approach

• Evaluation of disruption prediction models in advance to the thermal quench

▪ Models: DilatedTCN, Bayesian-DilatedTCN

▪ Input features and data configuration: same as previous slide

Results – Overall model performance

Minimum prediction 

time > 40 ms

TestsetDilated TCN with 40 ms Bayesian Dilated TCN with 40 ms

No significant difference of model capabilities 

Is Bayesian not useful?
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▪ Simulation result for predicting disruptions in shot 20948 (1)

• Predicting occurrences in advance to thermal quench and detecting indirect causes from LM disrupted experiment

Results – Simulations for continuous disruption predictions

Disruption was successfully predicted in 

advance to thermal quench with 40 ms.

Input signal importance can be computed 

directly within the disruption predictions

q95 and LM signals have 

high feature importance!

▪ Setting: Bayesian Dilated TCN + prediction time 40ms + Locked mode plasmas (shot 20948)

▪ Successful prediction + q95 and LM signals show high feature importance: detecting causes also possible
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▪ Simulation result for predicting disruptions in shot 20948 (2)

• Disruption probability curve and time-varying feature importance near the disruptive phase – thermal quench 

Results – Simulations for continuous disruption predictions

▪ Input features with high importance: q95 (40ms) → q95, ECE, BOL (30ms) → q95, ECE, BOL, LM (20ms) → q95, ECE, BOL, LM (10ms)

▪ Probable situation: Precursor (locking) → Current profile affected → Te decrease → radiation increase → thermal quench

TQ – 40ms Main feature: q95

TQ – 10ms
Main feature: LM, BOL

Current profile flattening

ECE(Te) + Locked mode + Radiation

Thermal quench

Te drastically decrease (ECE)
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▪ Uncertainty computations for several cases: True alarms, False alarms, Missing alarms

• Aleatoric and Epistemic uncertainties of disruption predictions for feasible cases

▪ True positive case (True alarms): Low uncertainty + High average probability, good generalization with True positive data

▪ False positive case (False alarms): the rate can decrease by constraining the upper limit of uncertainties

▪ False negative case (Missing alarms): completely misunderstanding the way to predict disruptions → extending input signals or

other relevant features should be used.

Discussion – Disruption prediction and uncertainty computation

Low uncertainty + High average probability High uncertainty + High average probability High uncertainty + Relatively low  probability
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▪ Analysis for aleatoric and epistemic uncertainty distribution for TP, FP, and FN cases

Discussion – Disruption prediction and uncertainty computation

Aleatoric (data-driven) uncertainty Epistemic (model-driven) uncertainty

Threshold: 0.22 Threshold: 0.0009

Question: How to reduce FN and FP 

without a decrease in TP?

Option 1. FP↓ and FN↑, but TP↓

Option 2. FN↓ and FP↑, as TP↑

T
ra

in
s

e
t

T
e

s
ts

e
t

▪ True & False alarms: X diff btw train & test

▪ Missing alarms: both uncertainties ↑

Low confidence about 

classifying non-disruptive state

Low generalization for 

missing alarm cases

FN FN

FNFN
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▪ Improvement by fine-tuning thresholds of models

Discussion – Disruption prediction and uncertainty computation

• Fine-tuning thresholds of model output and aleatoric uncertainty to maximize F1 score

▪ Setting: evaluation on test dataset + Bayesian Dilated TCN + TQ 40 ms

▪ Finding the optimal thresholds for model output and aleatoric uncertainty → Increase of F1, Precision, and Recall

F1 score Precision Recall

Model output > threshold: disruptive
Model output > threshold & aleatoric uncertainty < au-threshold: disruptive

Model output <= threshold & aleatoric uncertainty >= au-threshold: disruptive

Threshold

Disruptive

Au-threshold
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▪ Analysis of feature importance: estimation of main signals for predicting disruptions

Discussion – Feature importance and main signals for predictions

• Estimation of main signals related to disruption prediction from integrated gradients for TP, FP, and TN cases

▪ The top 5 main signals with the highest integrated gradients were selected for all predictions.

▪ Main signals:  plasma current, Bolometers, Major radius, ECE profiles, q0, q95

▪ Input signals with high feature importance for true alarms and low feature importance for missing alarms are imperative.

FN
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▪ Case study: Locked mode disruption shot

Discussion – Feature importance and main signals for predictions

• Top 5 main signals for the experiments with a special case: Locked mode disruption case 

▪ Shot list: 20941, 20945, 20947, 20948, 20949, 20951, 20975, 20977

▪ No false alarms observed + Profile information (ECE + q95, q0) and triangularity (top and bottom) important

▪ Bayesian Dilated TCN predicts some shots (20830, 20904, 20948, 20949, 20951, 20975, 20977, 20978, 20980, ..)

▪ Possibility of estimating the indirect causes of disruptions 

FN
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Conclusion

Shot Factors

• Not only current quench, but thermal quench can now be predicted via multiple diagnostic signals and Dilated TCN.

• Bayesian neural networks can provide aleatoric and epistemic uncertainty that enhance models’ precisions: False alarm rates can 

decrease with a rule-based approach utilizing uncertainties.

• Direct feature importance computation with integrated gradients allows the model to detect the indirect causes of disruptions

within predicting disruptions. 

• Analysis of causes of disruptions estimated by Bayesian models with specific experiments will be conducted.

→ An arose question: Can the Bayesian model map the relation between the causes (signals) and precursors of disruptions?



Thank You
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▪ Bayesian Neural Network

• Conventional approach (Frequentist view): weights of the neural networks are trained by maximum likelihood estimation (MLE)

• Weights as random variables: Finding the optimal weights = Maximum a posteriori (MAP) weights

Appendix – Bayesian Neural Network

Charles Blundell et al, 2015

𝑊𝑀𝐿𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑊 log𝑃(𝐷|𝑊) 𝑊𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑊 log𝑃 𝑊 𝐷 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑊 log𝑃 𝐷 𝑊 + 𝑙𝑜𝑔𝑃(𝑊)

• Bayesian by Backpropagation (Charles Blundell et al, 2015)

• Variational inference: intractable in general cases, but variational approximation by MC sampling 

can reduce the computational cost and handle intractability.

𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝐾𝐿[𝑞 𝑤 𝜃 | 𝑃 𝑤 − 𝐸𝑞 𝑙𝑜𝑔𝑃 𝐷 𝑊 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝐹(𝐷, 𝜃)
Gaussian variational posterior

𝐹 𝐷, 𝜃 =log𝑞 𝑤 𝜃 − 𝑙𝑜𝑔𝑃 𝑤 − 𝑙𝑜𝑔𝑃(𝐷|𝑤)

Test error on MNIST as training progresses, 
Charles Blundell et al, 2015

Trained weights of the neural networks, 
Charles Blundell et al, 2015
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▪ Computation of the uncertainty

• Aleatoric uncertainty vs Epistemic uncertainty

• Aleatoric uncertainty: uncertainty induced by the data noise, due to the random nature of the physical systems  

• Epistemic uncertainty: uncertainty induced by model weights, related to the probabilistic distribution of the model weights, due 

to the lack of knowledge of the systems (a low generalization of the model)

• Aleatoric uncertainty decreases with the increase of dataset, however epistemic uncertainty requests to refine the model

• We can calculate epistemic uncertainty from the Bayesian approach, thus we can get more accurate and reliable disruption 

prediction with considering Epistemic uncertainty.

Appendix - uncertainties

𝑉𝑎𝑟𝑞 𝑃 𝑦∗ 𝑥∗ = 𝐸𝑞 𝑦
∗𝑦∗𝑇 − 𝐸𝑞 𝑦

∗ 𝐸𝑞 𝑦
∗ 𝑇 = ∫ [𝑑𝑖𝑎𝑔 𝐸𝑝 𝑦

∗ − 𝐸𝑝 𝑦
∗ 𝐸𝑝 𝑦

∗ 𝑇𝑞𝜃 𝑤 𝐷 𝑑𝑤 + ∫ 𝐸𝑝 𝑦∗ − 𝐸𝑞 𝑦
∗ 𝐸𝑝 𝑦

∗ − 𝐸𝑞 𝑦
∗

𝑇
𝑞𝜃 𝑤 𝐷 𝑑𝑤

Aleatoric uncertainty Epistemic uncertainty

Aleatoric uncertainty computed by Bayesian VGG on MNIST dataset, Kumar Shridhar et al, 2019 Simple computation of aleatoric uncertainty and epistemic uncertainty, Kumar Shridhar et al, 2019 
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