Bayesian neural network for predicting disruptions

using EFIT and diagnostic data in KSTAR

¹JinSu Kim, ²JeongWon Lee, ³Jaemin Seo, ⁴Young-chul Ghim and ^{*1}Yong-Su Na

asdwlstn@snu.ac.kr, *ysna@snu.ac.kr

¹Department of Nuclear Engineering, Seoul National University, Seoul, Korea ²Korean Institute of Fusion Energy ³Department of Physics, Chung-Ang University, Korea ⁴Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Korea

2023.10.27

SEOUL NATIONAL UNIVERSITY

Contents

Introduction

- Disruptions: definition and general process
- Disruption prediction based on data-driven approaches
- Bayesian deep learning: stochastic neural network

Development

- Dataset construction
- Dilated temporal convolution network
- Integrated gradient method for computing feature importance

Results and Discussion

- Overall model performance with different prediction times
- Continuous disruption prediction with test data
- Analysis for uncertainty computation and causes of disruptions
- Summary and conclusion

Page

Introduction – Disruption

Definition and general process

Definition

- Global and sudden losses of plasma with large amount of energy loss.
- 4 phases: Pre-precursor phase \rightarrow Precursor phase \rightarrow Fast phase \rightarrow Current phase

Process of disruption

- The evolution of an unstable current profile → growth of a tearing mode
- A sudden relaxation of the equilibrium: current profile flatten + loss of confinement
 - + collapse of $T_{plasma} \rightarrow$ Thermal quench (TQ)
- The total current decays → Current quench (CQ)
- E_{ϕ} \uparrow associated with Z_{plasma} \uparrow : generates **runaway electrons** \rightarrow **Large current**
- Loss of plasma energy + current decay

Fig 1, J.Vega et al, 2022, Nature Physics

Page

Importance of disruption prediction

Severeness of the disruption in tokamak device

- Disruptions→ erosion / melting / structural damage in Tokamak device
- Predicting disruption well in advance is important to mitigate and to avoid disruptions.

Related work

- Physics-based approaches by MHD theory and simulation: DECAF (2020)
- Data-driven approaches (ML/DL) can be alternative for disruption predictor.

Various attempts based on data-driven approach

- Kates et al (2019): Fusion recurrent neural networks in JET and D3D
- Croonen et al (2020): SVM, RF, GBT \rightarrow Ensemble learning
- Ferreiral et al (2020): CNN models with Plasma tomography (image) in JET
- R.M.Churchil et al (2021): Dilated TCN with ECE profiles in D3D
- E.Aymerich et al (2022): CNN with plasma profile(Bolometer diagnostic, Thomson scattering) in JET

Page

- Related work: Deep learning application for multimodal data in disruption prediction
- Disruption Prediction and Analysis through Multimodal Deep Learning in KSTAR [Jinsu Kim et al., FED, submitted]
 - Multimodal learning: Meta-learning for 2 or more different modalities of data (e.g. Video data + time-series data)

 \rightarrow Improved capabilities + Robustness to data noise + Improved accuracy by multi-modalities

Data structure: Video (IVIS Image sequence) + Time-series (0D parameters)

 \rightarrow Video data: Spatial-temporal information including time-varying position and shape of plasma

ightarrow 0D parameters: Physical attributed features for state of plasma

Issues on disruption predictions using deep learning : Overfitting

Overfitting

- Low generalization due to the tendency of fitting closer to the training data than to the underlying distribution
- \uparrow model complexity or few data compared to model complexity \rightarrow generalization error \uparrow
- Generalization: how to discover general patterns from given data
- Underfitting: limiting the reduction of training error due to the low complexity or small data
- ↑ modalities → ↑ capacities + representation but sub-optimal + overfitting causes due to different generalization rates

Issues on disruption predictions using deep learning : Overconfidence

Overconfidence

- Overconfident prediction when neural networks provide a confidence interval
- ReLU networks susceptible to O.O.D examples (Guo et al., 2017), always overconfident far away from the data (Hein et al., 2019)
- The neural networks can not be aware of their predictions' uncertainty based on general approach

Parsed an image of myself through the animal network and it's 98% confident I'm a dog.

Pictures from https://jramkiss.github.io/2020/07/29/overconfident-nn/

Fig 17. Result of continuous disruption prediction of shot 21310 in KSTAR with (a) Transformer and (b) Multimodal model with a prediction time of 95.20 ms

Introduction – Bayesian Neural Network

How to handle these issues

- Learning uncertainties is needed → Bayesian approach should be applied!
 - Stochastic neural networks trained by variational inference: computation of the uncertainties + scalability + small dataset
 - Maximize a Posterior (MAP): Maximize Likelihood Estimation (MLE) + Regularization, robustness to overfitting
- Conventional approach (Frequentist view): weights of the neural networks are trained by maximum likelihood estimation (MLE)
- Weights as random variables: Finding the optimal weights = Maximum a posteriori (MAP) weights

 $W^{MLE} = \arg\max_{W} \log P(D|W) \qquad W^{MAP} = \arg\max_{W} \log P(W|D) = \arg\max_{W} \log P(D|W) + \log P(W)$

• Bayesian by Backpropagation (Charles Blundell et al, 2015)

 $\theta^* = \arg \min_{\theta} KL[q(w|\theta)||P(w)] - E_q[\log P(D|W)] = \arg \min_{\theta} F(D,\theta)$

 Variational inference: intractable in general cases, but variational approximation by MC sampling can reduce the computational cost and handle intractability.

$$F(D,\theta) = \sum \log q(w|\theta) - \log P(w) - \log P(D|w)$$

Figure 1. Left: each weight has a fixed value, as provided by classical backpropagation. Right: each weight is assigned a distribution, as provided by Bayes by Backprop.

Charles Blundell et al, 2015

Introduction - uncertainties

Computation of the uncertainty

- Aleatoric uncertainty vs Epistemic uncertainty
- Aleatoric uncertainty: data uncertainty, due to the random nature of the physical systems
- **Epistemic uncertainty**: model uncertainty, related to the probabilistic distribution of the model weights, due to the lack of knowledge of the systems (a low generalization of the model)

$$Var_{q}[P(y^{*}|x^{*})] = E_{q}[y^{*}y^{*}] - E_{q}[y^{*}]E_{q}[y^{*}]^{T} = \int [diag[E_{p}[y^{*}]] - E_{p}[y^{*}]E_{p}[y^{*}]^{T}q_{\theta}(w|D)dw + \int [E_{p}[y^{*}] - E_{q}[y^{*}]] [E_{p}[y^{*}] - E_{q}[y^{*}]]^{T}q_{\theta}[w|D]dw$$

Aleatoric uncertainty

Epistemic uncertainty

- Aleatoric uncertainty decreases with the increase of dataset, however epistemic uncertainty requests to refine the model
- We can calculate epistemic uncertainty from the Bayesian approach, thus we can get more accurate and reliable disruption prediction with considering Epistemic uncertainty.

where \bar{p}

Aleatoric uncertainty computed by Bayesian VGG on MNIST dataset, Kumar Shridhar et al, 2019

$$\begin{aligned} \operatorname{Var}_q \left(p(y^* | x^*) \right) &= \underbrace{\frac{1}{T} \sum_{t=1}^T \operatorname{diag}(\hat{p}_t) - \hat{p}_t \ \hat{p}_t^T}_{\text{aleatoric}} + \underbrace{\frac{1}{T} \sum_{t=1}^T (\hat{p}_t - \bar{p}) (\hat{p}_t - \bar{p})^T}_{\text{epistemic}} \\ &= \frac{1}{T} \sum_{t=1}^T \hat{p}_t \text{ and } \hat{p}_t = \operatorname{Sofplus}_n \left(f_{w_t}(x^*) \right). \end{aligned}$$

Simple computation of aleatoric uncertainty and epistemic uncertainty, Kumar Shridhar et al, 2019

Introduction - strategies

- Aims of this research
 - **Prediction**: Forecasting before thermal quench (minimum: 40ms)
 - High accuracy: Minimizing false alarm rates and missing alarm rates
 - **Cause estimation**: Direct input feature importance computation for inferring causes

Key concepts

- **Bayesian neural network**: Stochastic neural network for covering overconfidence
- Integrated Gradients: Gradient-based feature importance computation algorithm
- **Dilated TCN**: Model architecture for handling multi-time scale data

Introduction - strategies

Development – Dataset Construction

- Expansion of the signals for enhancing the prediction accuracy
 - Causes of disruption (J.A.Wesson, Nucl.Fusion, 1989)
 - **Density limit disruption**: Radiative contraction + Precursor instabilities + Energy quench + Current decay
 - Low q-limit disruption: Fast rise of n=1 perturbed magnetic field + Mode lock
 - **Current rise disruption**: Peaking of the current profile + Sawtooth + Density limit disruption
 - Vertical instability disruption: Elongated plasma forced by strong Lorentz force due to halo current and disrupted
 - Disruption classification
 - Mode lock: LM signals
 - H/L transition: H89
 - Density limit: Radiation / density profiles
 - High radiated power: H-alpha
 - Internal transport barrier: 1D-profiles of temperature / density
 - Vertical displacement: Error fields, HCM(Halo current)

- plasma current [A]
- locked mode amplitude [T]
- radiated power [W]
- plasma density [m⁻³]
- input power [W]
- internal inductance
- stored energy derivative [J s⁻¹]
- safety factor
- poloidal beta
- plasma centroid vertical position [m].
 - Input feature for disruption predictor from B.Cannas et al, 2006

Development – Dataset Construction

Expansion of the signals for enhancing the prediction accuracy

• Input features generally used in ML / DL

- EFIT: q95, Ip, P, li, B-field, R, a,
- Diagnostic signals: Mirnov coil, LM amplitude,...

	TABLE I. D)iagnostic dataset features.						
All - 995 -	C M-	Sizzal deservition	A	I.I.n.ita	name	description		
p,target -	5. INO.	Signal description	Acronym	Units	I_{pla}	plasma current		
	1	Total input power	P _{total}	W	MLA	mode lock amplitude		
$T_{e}(\rho)$	2	Plasma current	I _{plasma}	A	l	plasma internal inductance		
$n_e(\rho)$	3	Plasma density	Dens	m ⁻³	Wdie	diamagnetic energy		
Prad,edge	4	Line integrated density	LDens	m^{-2}	Wdia	time derivative of the diamagnetic energy		
n _e	5	Safety factor <i>a</i>	Te_Probe	T(eV)	n_e	electron density		
τ _{in}	7	Greenwald density	ne _{Greenwald}	D	P_{out}	radiated output power		
p,direct	8	Toroidal magnetic field	B_t	$T Z_m$	P_{in}	input power: sum of ICRH and NBI power		
P _{in}	9	Vertical plasma position	PVP			edge safety factor		
li - Prad,core -	10 11–14	Horizontal plasma position Mirnov coil (four coils)	PHP Rad	Z_m W	B_{ϕ}	toroidal magnetic field strength		
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ALIC value								
Julian Kates et al, 2019		Jayakumar Chandrasekaran et al, 2022			J.Croonen et al, 2020			

• Disruption classification: Tabular dataset is enough $X \in R^D$

KSTAR environment = partially observable system → Sequential data

• Disruption prediction: Tabular dataset is not enough, Time-series dataset is needed (Sequential data) $X \in R^{TxD}$

Page 13 PLAB

Development – Dataset Construction

Expansion of the signals for enhancing the prediction accuracy

• EFIT	
--------	--

• ECE

• Diagnostic data

Description Variable		Description	Variable	Description	Variable				
Plasma current	I_p		ECE08	Lock mode signals	LM01 ~ LM04				
Normalized beta	β_n		ECE13		HCMIL01 ~ HCMIL16				
Poloidal beta	β_p		ECE18	Halo current monitoring signals	HCMID01 ~ HCMID08				
Elongation	κ		ECE24		HCMCD01 ~ HCMCD16				
Safety factor (edge)	q_{95}		ECE26		HCMOD01 ~ HCMOD08				
Safety factor (core)	q_0	ECE with different channels	ECE32		Betap-DLM03				
Major radius	R _C		ECE37	Diamagnetic loop	Wtot				
Minor radius	а		ECE42	Ŭ.	DMF-DLM03				
Internal inductance	li		ECE54		DLM01-DLM03				
Triangularity – top	δ_{top}		ECE63	TCI	ne-tci01 ~ ne-tci05				
Triangularity - bottom	δ_{bottom}		ECE67	Loop voltage	LV01-LV45				
Toroidal magnetic field B _{toroidal}			ECE72	H alpha	TOR-HA01 ~ POL-HA10				
		The state of the s		EC heating	EC2-PWR ~ EC4-PWR				
Data points (seque	ns nce length): 10	Data points (sequence	length): 50	NB heating	NB11 – NB13				
Data points (sequence length): 10		Data points (sequence	lengin). 50		RC01 ~ RC03				
				Rogowski coil	VCM01 ~ VCM03				
					RCPPU1, RCPPL1				

Time intervals: 10 ms Data points (sequence length): 50

10-2

Transport

100

100

10²

Current diffusion

10-4

Macrosopic stability

10-2

10

102

Development – Dilated temporal convolution network

- Effective model architectures for multi-scale time series data
 - Deep convolutional neural networks with dilated convolutions
 - Convolution layer: A layer that computes convolution products with different filters to extract the feature maps
 - Dilated convolution: extends the receptive field by adding zero padding (spacing) in kernel filters

Convolution process with dilated rate = 1

Convolution process with dilated rate = 2

- Temporal convolution networks with dilated convolutions can effectively separate out structures in multi-scale data.
- Long sequences can be covered by the increase of receptive fields due to dilated convolutions

*Receptive field: A size of input neurons' space that affects one neuron of the output layer

10-6

Turbulence

Time [s] 10-10

Space [m] 10-6

10-8

Wave propagation

Development – Integrated Gradients

- Gradient-based feature selection algorithm
 - Integrated Gradients
 - The problem of attributing the prediction of a neural network to its input features can be approximated by Integrated Gradients.
 - Gradients of the output with respect to the input = a natural analog of the model coefficient, but breaks sensitivity

Results – Overall model performance

- Model performance with different prediction times compared with previous research
 - Evaluation of disruption prediction models in advance of the current quench
 - Models: Transformer, CNN-LSTM, MLSTM-FCN, DilatedTCN
 - Input features: EFIT + Diagnostic data (same as previous slides)
 - Data configuration (Features, sequence length, train-test set) and training strategies (Focal Loss + Deferred Re-weighting): equivalent

Model	Number of parameters
Transformer	1,447,170
MLSTM-FCN	1,898,370
CNN-LSTM	1,439,234
Dilated TCN	252,768

Results – Overall model performance

Model performance with different prediction times compared with Bayesian approach

No significant difference of model capabilities

- Evaluation of disruption prediction models in advance to the thermal quench
 - Models: DilatedTCN, Bayesian-DilatedTCN
 - Input features and data configuration: same as previous slide

Results – Simulations for continuous disruption predictions

- Simulation result for predicting disruptions in shot 20948 (1)
 - Predicting occurrences in advance to thermal quench and detecting indirect causes from LM disrupted experiment
 - Setting: Bayesian Dilated TCN + prediction time 40ms + Locked mode plasmas (shot 20948)
 - Successful prediction + q95 and LM signals show high feature importance: detecting causes also possible

Results – Simulations for continuous disruption predictions

- Simulation result for predicting disruptions in shot 20948 (2)
 - Disruption probability curve and time-varying feature importance near the disruptive phase thermal quench
 - Input features with high importance: q95 (40ms) \rightarrow q95, ECE, BOL (30ms) \rightarrow q95, ECE, BOL, LM (20ms) \rightarrow q95, ECE, BOL, LM (10ms)
 - Probable situation: Precursor (locking) → Current profile affected → Te decrease → radiation increase → thermal quench

Discussion – Disruption prediction and uncertainty computation

- Uncertainty computations for several cases: True alarms, False alarms, Missing alarms
 - Aleatoric and Epistemic uncertainties of disruption predictions for feasible cases
 - True positive case (True alarms): Low uncertainty + High average probability, good generalization with True positive data
 - False positive case (False alarms): the rate can decrease by constraining the upper limit of uncertainties
 - False negative case (Missing alarms): completely misunderstanding the way to predict disruptions → extending input signals or other relevant features should be used.

Discussion – Disruption prediction and uncertainty computation

Analysis for aleatoric and epistemic uncertainty distribution for TP, FP, and FN cases

- True & False alarms: X diff btw train & test
- Missing alarms: both uncertainties ↑

Discussion – Disruption prediction and uncertainty computation

- Improvement by fine-tuning thresholds of models
 - Fine-tuning thresholds of model output and aleatoric uncertainty to maximize F1 score
 - Setting: evaluation on test dataset + Bayesian Dilated TCN + TQ 40 ms

0.00

■ Finding the optimal thresholds for model output and aleatoric uncertainty → Increase of F1, Precision, and Recall

Discussion – Feature importance and main signals for predictions

- Analysis of feature importance: estimation of main signals for predicting disruptions
 - Estimation of main signals related to disruption prediction from integrated gradients for TP, FP, and TN cases
 - The top 5 main signals with the highest integrated gradients were selected for all predictions.
 - Main signals: plasma current, Bolometers, Major radius, ECE profiles, q0, q95
 - Input signals with high feature importance for true alarms and low feature importance for missing alarms are imperative.

Discussion – Feature importance and main signals for predictions

Case study: Locked mode disruption shot

- Top 5 main signals for the experiments with a special case: Locked mode disruption case
 - Shot list: 20941, 20945, 20947, 20948, 20949, 20951, 20975, 20977
 - No false alarms observed + Profile information (ECE + q95, q0) and triangularity (top and bottom) important
 - Bayesian Dilated TCN predicts some shots (20830, 20904, 20948, 20949, 20951, 20975, 20977, 20978, 20980, ..)
 - Possibility of estimating the indirect causes of disruptions

Conclusion

- Not only current quench, but thermal quench can now be predicted via multiple diagnostic signals and Dilated TCN.
- Bayesian neural networks can provide aleatoric and epistemic uncertainty that enhance models' precisions: False alarm rates can decrease with a rule-based approach utilizing uncertainties.
- Direct feature importance computation with integrated gradients allows the model to detect the indirect causes of disruptions within predicting disruptions.
- Analysis of causes of disruptions estimated by Bayesian models with specific experiments will be conducted.

 \rightarrow An arose question: Can the Bayesian model map the relation between the causes (signals) and precursors of disruptions?

Shot														Factors
20826	2018	4	14.595	14.5664	14.5655	14.5664		0	0	8	1	0	0	500 MHD
20830	2018	3.999	14.574	14.5495	14.5524	14.5524		0	0	8	1	1	1	500 MHD
20897	2018	1.5	5.098	5.072	5.0732	5.0732		0	0	8	1	0	0	700 ELM
20899	2018	1.5	5.286	5.2581	5.2593	5.2593		0	0	8	1	1	1	700 NC
20900	2018	1.5	4.785	4.7571	4.7586	4.7586		0	0	8	1	0	0	700 NC
20904	2018	3.7	5.738	5.7141	5.7176	5.7176		0	0	8	1	1	1	500 NC
20925	2018	3.7	8.536	8.5119	8.5129	8.5129		0	0	8	1	0	0	500 NC
20938	2018	1.9	8.773	8.7432	8.7441	8.7441		1	0	8	1	1	1	600 NC
20941	2018	2.997	5.789	5.7637	5.7339	5.7637		1	0	8	1	0	0	539 LM3D
20945	2018	2.997	7.955	7.9328	7.934	7.934		1	0	8	1	0	0	540 LM3D
20947	2018	2.997	7.035	7.011	7.0013	7.011		1	0	8	1	1	1	550 LM3D
20948	2018	2.993	10.606	10.5841	10.5816	10.5816		1	0	8	1	1	1	519 LM3D
20949	2018	4.995	7.876	7.8472	7.846	7.8472		1	0	8	1	1	1	560 LM3D
20951	2018	2.993	9.675	9.6496	9.6461	9.6461		1	0	8	1	1	1	519 LM3D
20975	2018	2	7.351	7.316	7.3165	7.3165		1	0	0	1	0	0	850 LM3D
20977	2018	2	8.971	8.9341	8.9354	8.9354	8.9015	1	0	8	1	1	1	850 LM3D
20978	2018	2	8.625	8.5896	8.5892	8.5896	8.5608	0	0	8	1	0	0	850 MHD
20980	2018	2	8.62	8.5842	8.5852	8.5852	7.4189	0	0	8	1	1	1	850 MHD
21031	2018	1.497	6.941	6.9235	6.9282	6.9235	6.2842	0	0	8	1	0	0	519 ETC
21033	2018	1.5	5.998	5.9788	5.9812	5.9812	5.6742	0	0	8	1	0	0	500 NC

Thank You

Bayesian Neural Network

- Conventional approach (Frequentist view): weights of the neural networks are trained by maximum likelihood estimation (MLE) ٠
- Weights as random variables: Finding the optimal weights = Maximum a posteriori (MAP) weights ٠

 $W^{MLE} = aramax_W \log P(D|W)$ $W^{MAP} = argmax_W \log P(W|D) = argmax_W \log P(D|W) + \log P(W)$

Bayesian by Backpropagation (Charles Blundell et al, 2015)

 $\theta^* = \arg \min_{\theta} KL[q(w|\theta)||P(w)] - E_a[logP(D|W)] = \arg \min_{\theta} F(D,\theta)$

Variational inference: intractable in general cases, but variational approximation by MC sampling • can reduce the computational cost and handle

Charles Blundell et al, 2015

Figure 1. Left: each weight has a fixed value, as provided by classical backpropagation. Right: each weight is assigned a distribution, as provided by Bayes by Backprop.

Charles Blundell et al, 2015

e intractability.

$$D,\theta) = \sum \log q(w|\theta) - \log P(w) - \log P(D|w)$$

Trained weights of the neural networks, Charles Blundell et al, 2015

Gaussian variational posterior

1. Sample $\epsilon \sim \mathcal{N}(0, I)$. 2. Let $w = \mu + \log(1 + \exp(\rho)) \circ \epsilon$. 3. Let $\theta = (\mu, \rho)$. 4. Let $f(\mathbf{w}, \theta) = \log q(\mathbf{w}|\theta) - \log P(\mathbf{w})P(\mathcal{D}|\mathbf{w})$. 5. Calculate the gradient with respect to the mean

$$= \frac{\partial f(\mathbf{w}, \theta)}{\partial \mathbf{w}} + \frac{\partial f(\mathbf{w}, \theta)}{\partial \mu}.$$
 (3)

6. Calculate the gradient with respect to the standard deviation parameter ρ

$$\Delta_{\rho} = \frac{\partial f(\mathbf{w}, \theta)}{\partial \mathbf{w}} \frac{\epsilon}{1 + \exp(-\rho)} + \frac{\partial f(\mathbf{w}, \theta)}{\partial \rho}.$$
 (4)

7. Update the variational parameters:

 Δ_{μ}

 $\mu \leftarrow \mu - \alpha \Delta_{\mu}$ (5) $\rho \leftarrow \rho - \alpha \Delta_{\rho}$.

(6)

 $P(\mathbf{w}) = \prod \pi \mathcal{N}(\mathbf{w}_j | 0, \sigma_1^2) + (1 - \pi) \mathcal{N}(\mathbf{w}_j | 0, \sigma_2^2), \quad (7)$

Computation of the uncertainty

- Aleatoric uncertainty vs Epistemic uncertainty
- Aleatoric uncertainty: uncertainty induced by the data noise, due to the random nature of the physical systems
- Epistemic uncertainty: uncertainty induced by model weights, related to the probabilistic distribution of the model weights, due to the lack of knowledge of the systems (a low generalization of the model)

$$Var_{q}[P(y^{*}|x^{*})] = E_{q}[y^{*}y^{*}] - E_{q}[y^{*}]E_{q}[y^{*}]^{T} = \int [diag[E_{p}[y^{*}]] - E_{p}[y^{*}]E_{p}[y^{*}]^{T}q_{\theta}(w|D)dw + \int [E_{p}[y^{*}] - E_{q}[y^{*}]] [E_{p}[y^{*}] - E_{q}[y^{*}]]^{T}q_{\theta}[w|D]dw$$

Aleatoric uncertainty

Epistemic uncertainty

- Aleatoric uncertainty decreases with the increase of dataset, however epistemic uncertainty requests to refine the model
- We can calculate epistemic uncertainty from the Bayesian approach, thus we can get more accurate and reliable disruption prediction with considering Epistemic uncertainty.

Aleatoric uncertainty computed by Bayesian VGG on MNIST dataset, Kumar Shridhar et al, 2019

$$\begin{aligned} \mathrm{Var}_q \big(p(y^* | x^*) \big) = \underbrace{\frac{1}{T} \sum_{t=1}^T \mathrm{diag}(\hat{p}_t) - \hat{p}_t \ \hat{p}_t^T}_{\mathrm{aleatoric}} + \underbrace{\frac{1}{T} \sum_{t=1}^T (\hat{p}_t - \bar{p}) (\hat{p}_t - \bar{p})^T}_{\mathrm{epistemic}} \\ \end{aligned}$$
where $\bar{p} = \frac{1}{T} \sum_{t=1}^T \hat{p}_t$ and $\hat{p}_t = \mathrm{Sofplus}_{\mathrm{n}} \big(f_{w_t}(x^*) \big). \end{aligned}$

Simple computation of aleatoric uncertainty and epistemic uncertainty, Kumar Shridhar et al, 2019