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Introduction — Disruption

Digruption time

™\

= Definition and general process L

Electron density ™~

1 Definition

Pre-pracursor phasg — o

* Global and sudden losses of plasma with large amount of energy loss.

mmmwmmwﬁ\

Precursor phase ——

1 Process of disruption

* 4 phases: Pre-precursor phase - Precursor phase - Fast phase - Current phase Perturbed poloidal field /'\
/
/

K

* The evolution of an unstable current profile & growth of a tearing mode
— (+— Thermal

* Asudden relaxation of the equilibrium: current profile flatten + loss of confinement quenen

Electron temperature
+ collapse of T} 45mq = Thermal quench (TQ)

* The total current decays - Current quench (CQ)
. . Current guench ——=| ——
* Ey T associated with Z,,;,5mq T: generates runaway electrons -> Large current -
Plasma current
* Loss of plasma energy + current decay
Thermal Current Runaway Time '
Precursor(MHD) Quench Quench Electron

Fig 1, J.Vega et al, 2022, Nature Physics
Normal e * g i * ‘ . Disruption
state
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Introduction — Disruption Prediction

= Importance of disruption prediction

(1 Severeness of the disruption in tokamak device

Disruptions—> erosion / melting / structural damage in Tokamak device

Predicting disruption well in advance is important to mitigate and to avoid disruptions.

1 Related work

Physics-based approaches by MHD theory and simulation: DECAF (2020)

Data-driven approaches (ML/DL) can be alternative for disruption predictor.

1 Various attempts based on data-driven approach

Kates et al (2019): Fusion recurrent neural networks in JET and D3D
Croonen et al (2020): SVM, RF, GBT - Ensemble learning

Ferreiral et al (2020): CNN models with Plasma tomography (image) in JET
R.M.Churchil et al (2021): Dilated TCN with ECE profiles in D3D

E.Aymerich et al (2022): CNN with plasma profile(Bolometer diagnostic, Thomson scattering) in JET
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Introduction — Disruption Prediction

= Related work: Deep learning application for multimodal data in disruption prediction

d Disruption Prediction and Analysis through Multimodal Deep Learning in KSTAR [Jinsu Kim et al., FED, submitted)

* Multimodal learning: Meta-learning for 2 or more different modalities of data (e.g. Video data + time-series data)
- Improved capabilities + Robustness to data noise + Improved accuracy by multi-modalities

* Data structure: Video (IVIS Image sequence) + Time-series (OD parameters)
— Video data: Spatial-temporal information including time-varying position and shape of plasma

— 0D parameters: Physical attributed features for state of plasma

Original - Normal phase Attention Rollout - Normal phase

Data preprocessing for OD data Data preprocessing for video data

10 T
—— disrupt prob

t=0.119 —— thresholdi(p = 0.5)
===~ thermal quench

—=- current quench
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Matching
image sequence and 0D data sequence 1
‘ —_—
: . 27
0Ddata: (B, T,D) Video data : (B, T, C, H, W)
Multimodal input data : 0D data (B,T,D) + Video data (B,T,C,H,W) 0.0 5 g g g A g 6 g




Introduction — Disruption Prediction
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= [Issues on disruption predictions using deep learning : Overfitting

d  Overfitting

* Low generalization due to the tendency of fitting closer to the training data than to the underlying distribution

* M model complexity or few data compared to model complexity > generalization error T

* Generalization: how to discover general patterns from given data

* Underfitting: limiting the reduction of training error due to the low complexity or small data

* modalities > " capacities + representation but sub-optimal + overfitting causes due to different generalization rates

Training loss curve for Transformer models with EFIT data only

train and valid loss curve

train and valid 1 score curve

train loss
—a— valid loss

f1 score

1.0

0.9

0.8

0.7 1

0.6

0.59

Models cannot be optimized
at all after a few training
epochs: low generalization

—8— train f1 score
—e— valid f1 score

T T T T T T
0 10 20 30 40 50
epochs

T T
60 70

T T T T T
30 40 50 60 70
epochs

Overfitting
Fitting to the data noise rather than
the underlying distribution
y A ying
o
a
BB .
m B
o [ =]
s? |
>
X
Underfitting Just right! overfitting

Pictures from https://www.analyticsvidhya.com/blog/2021/06/complete-guide-to-

prevent-overfitting-in-neural-networks-part-1/
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Introduction — Disruption Prediction

= [Issues on disruption predictions using deep learning : Overconfidence

1 Overconfidence

* Overconfident prediction when neural networks provide a confidence interval

* RelLU networks susceptible to 0.0.D examples (Guo et al., 2017), always overconfident far away from the data (Hein et al., 2019)

* The neural networks can not be aware of their predictions’ uncertainty based on general approach

Multi-modality can be one of the
solutions, but too expensive

False alarms: overconfidence of models

(a) (b)

1.0 v 1.0 T
—— disrupt prob disrupt prob
—— threshold(p = 0.5) threshold(p = 0.5)
-=- flattop (t=1.500) —-=~ flattop (t=1.500)
-== TQ (t=5.342) -== TQ (t=5.342)
—-=-=- CQ (t=5.368) -==- CQ (t=5.368)
0.8 0.8 4
0.6
= zg°°
.-a =
s ?
2 E-1
] °©
=
Q. a
0.4 0.4
0.2 MAA 0.2
0.0 - - 0.0
o 1 2 3 4 s o 1 2 3 6

Time (unit: s) Time (unit: s)

Fig 17. Result of continuous disruption prediction of shot 21310 in KSTAR with (a) Transformer and (b) Multimodal
model with a prediction time of 95.20 ms

Prediction: dog

Probability: 0.98

Overconfidence

Prediction: dog
Probability: 0.95

Parsed an image of myself through the animal network and it's 98% confident I'm a dog.

Pictures from https://jramkiss.github.io/2020/07/29/overconfident-nn/
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Introduction — Bayesian Neural Network

= How to handle these issues
* Learning uncertainties is needed - Bayesian approach should be applied!

®  Stochastic neural networks trained by variational inference: computation of the uncertainties + scalability + small dataset

®  Maximize a Posterior (MAP): Maximize Likelihood Estimation (MLE) + Regularization, robustness to overfitting

* Conventional approach (Frequentist view): weights of the neural networks are trained by maximum likelihood estimation (MLE)

*  Weights as random variables: Finding the optimal weights = Maximum a posteriori (MAP) weights

WMLE = aqrgmax,, log P(D|W) WMAP = grgmax,, log P(W|D) = argmaxy, log P(D|W) + logP (W)
* Bayesian by Backpropagation (Charles Blundell et al, 2015)

6" = argmingKL[q(w|0)||P(W)] — E4[logP(D|W)] = argmingF (D, 6)

* Variational inference: intractable in general cases, but variational approximation by

MC sampling can reduce the computational cost and handle intractability.

F(D, 9) = z log Q(Wle) - logP(W) - lOgP (D |W) Figure 1. Left: each weight has a fixed value, as provided by clas-
sical backpropagation. Right: each weight is assigned a distribu-
tion, as provided by Bayes by Backprop.

Charles Blundell et al, 2015



Introduction - uncertainties

= Computation of the uncertainty

* Aleatoric uncertainty vs Epistemic uncertainty

knowledge of the systems (a low generalization of the model)

Aleatoric uncertainty: data uncertainty, due to the random nature of the physical systems

Epistemic uncertainty: model uncertainty, related to the probabilistic distribution of the model weights, due to the lack of

Var,[PGy*1x)] = Ely'y™"] = Egly 1B, [y'1" =|[ [diag |E,ly*1| - E,l

V1Eply

T gewiD)dm + | [E,0y] - Eqly*]] [Eply] - Eqly ] qolwlDldw

Aleatoric uncertainty

prediction with considering Epistemic uncertainty.

V= 0 0.1 0.2 0.3
aleatoric = (0.00099897  0.00099885  0.00099875  0.00099838

Aleatoric uncertainty computed by Bayesian VGG on MNIST dataset, Kumar Shridhar et al, 2019

Epistemic uncertainty

Aleatoric uncertainty decreases with the increase of dataset, however epistemic uncertainty requests to refine the model

We can calculate epistemic uncertainty from the Bayesian approach, thus we can get more accurate and reliable disruption

T T
. 1 e
Var, (p(y*|2") Z iag(pe) = pe By + 7 ) _ (e — ) (Be — P)

' e

aleatoric epistemic
where p = + 51, p; and p; = Sofplus, (fu, (z7)).

Simple computation of aleatoric uncertainty and epistemic uncertainty, Kumar Shridhar et al, 2019




Introduction - strategies

= Aims of this research

Prediction: Forecasting before thermal quench (minimum: 40ms)

High accuracy: Minimizing false alarm rates and missing alarm rates

* Cause estimation: Direct input feature importance computation for inferring causes

= Key concepts

* Bayesian neural network: Stochastic neural network for covering overconfidence

Integrated Gradients: Gradient-based feature importance computation algorithm

Dilated TCN: Model architecture for handling multi-time scale data

Page 10 P@RE



Introduction - strategies

Dataset with multi-modalities
containing multi-time scale signals

EFIT data

Time interval: 50 ms
Data point: 10

ECE data
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Time interval: 10 ms
Data point: 50

Time interval: 10
Data point: 50

Direct feature importance computation

(Integrated gradient)

Relative importance - True positive case, shot : 200438

Figuring out the causes and
classification of disruptions in advances
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Development — Dataset Construction

Expansion of the signals for enhancing the prediction accuracy

* Causes of disruption (J.A.Wesson, Nucl.Fusion, 1989)

Density limit disruption: Radiative contraction + Precursor instabilities + Energy quench + Current decay
Low g-limit disruption: Fast rise of n=1 perturbed magnetic field + Mode lock
Current rise disruption: Peaking of the current profile + Sawtooth + Density limit disruption

Vertical instability disruption: Elongated plasma forced by strong Lorentz force due to halo current and disrupted

* Disruption classification

Mode lock: LM signals e plasma current [A]
e locked mode amplitude [T]
H/L transition: H89 o radiated power [W]
e plasma density [m™ ]
Density limit: Radiation / density profiles e input power [W]
e internal inductance
High radiated power: H-alpha e stored energy derivative [Js~']
e safety factor
Internal transport barrier: 1D-profiles of temperature / density e poloidal beta

e plasma centroid vertical position [m].
Vertical displacement: Error fields, HCM(Halo current)

Input feature for disruption predictor
from B.Cannas et al, 2006

Page 12



Development — Dataset Construction

= Expansion of the signals for enhancing the prediction accuracy

* Input features generally used in ML/ DL
= EFIT: 995, Ip, P, li, B-field, R, a, ....

®  Diagnostic signals: Mirnov coil, LM amplitude,...

Al ' ' ' TABLE |. Diagnostic dataset features.
qos - name description
| S.No. Signal description Acronym Units
ptarget I plasma current
| 1 Total input power Protar w MLA mode lock amplitude
Te(p) 2 Plasma current Ipiasma A [ plasma internal inductance
ne(p 3 Plasma density Dens m - . . )
WhiHp L iy — Wiia diamagnetic energy
P rad cdge 4 Line integrated density Lpens m - W i derivative of the di otic enerev
e 5 Electron temperature Te_Probe T (eV) dia ime deriva 1‘. o of the diamagnetic energy
3 6 Safety factor gy dos ¢! Te electron density
| Tin 7 Greenwald density NeGreenwald D P radiated output power
f‘d'rm 8 Toroidal magnetic field B T P, input power: sum of ICRH and NBI power
pyError o I I I
0 9 Vertical plasma position PV Zm e i
. " qos edge safety factor
li 10 Horizontal plasma position PHP Zm B dal netic fiold streneth
Prad,core : , , 11-14 Mirnov coil (four coils) Rad W i toroidal magnetic field strengt
00 01 02 03 04 05 06 07 08 09
AUC value
) Jayakumar Chandrasekaran et al, 2022 J.Croonen etal, 2020
Julian Kates et al, 2019
. . o . . KSTAR environment = partially observable system
* Disruption classification: Tabular dataset is enough X € R? _, Sequential data

* Disruption prediction: Tabular dataset is not enough, Time-series dataset is needed (Sequential data) X € R™” ‘
Page 13 P@RE



Development — Dataset Construction

= Expansion of the signals for enhancing the prediction accuracy

EFIT * ECE * Diagnostic data
Description Variable Description Variable Description Variable
Plasma current Ip ECEQ8 Lock mode signals LMOT ~ LMD4
Normalized beta B ECE13 HCMIL01 ~ HCMIL16
Poloidal beta By ECE18 Halo current monitoring signals HCMIDOI ~ HCMIDOS
Elongation K ECE24 HCMCD01 ~ HCMCD16
Safety factor (edge) o ECE26 HCMODO01 ~ HCMODOS
Safety factor (core) qo ECE with different channels ECE32 Betap-DLMO03
Major radius Re ECE37 Diamagnetic loop Weoe
Miner radius a ECE42 DMF-DLMO3
Internal inductance Ii ECE54 DLMO01-DLMO03
Triangularity - top Grop ECE63 TCI ne-tci0l ~ ne-tci05
Triangularity - bottom Ghatrom ECE&Y Loop voltage LV0I-LV45
Toroidal magnetic field Brorsidal ECE?2 H alpha TOR-HADL ~ POL-HAI0
- _ _ - EC heating ECZ2-PWR ~ EC4-PWR
Time intervals: 50 ms Time intervals: 10 ms NB heating NE11 - NBL3
Data points (sequence length): 10 Data points (sequence length): 50
RC01 ~RC03
Rogowski coil VCMO1 ~ VCMO03

RCTTUL, RCTPL1

Time intervals: 10 ms IARE

Data points (sequence length): 50




Development — Dilated temporal convolution network

= Effective model architectures for multi-scale time series data

*Receptive field: A size of input neurons’ space that
. . . ffects fthe output
* Deep convolutional neural networks with dilated convolutions A7ecTs one neuron of he oulptt ayer

®  Convolution layer: A layer that computes convolution products with different filters to extract the feature maps

= Dilated convolution: extends the receptive field by adding zero padding (spacing) in kernel filters
oupt @ QO 0000000 OCOCPOPOO®O

Hidden = - A OO0 0000000000
Lyer @ 9O YT ROOTOYLOOUEYE

» W 000000000000000
A 4 4 J

Hidden 00000000
Adding zero padding to e = 5 7 7 7 7 70
extend the receptive field

mt @000 000C00C0C0CDOQCQOO0OO

ylnl = ¥;wlilx[n — d'i]
w: 1D dilated convolution filter of length k, x: input

Convolution process with dilated rate = 1 Convolution process with dilated rate = 2
. : : . : £
®  Temporal convolution networks with dilated convolutions can effectively
Time [s] 1010 108 | 106 104 |102 | 100 10210
separate out structures in multi-scale data. Space [m] [10 pmpagm:v‘ Mamom&lggﬁw J 100 102
. . . _9 \Transport Currentdiffusion
" Longsequences can be covered by the increase of receptive fields due to Twbulence

dilated convolutions Figure 1 from R.M. Churchill, 2019 @E



Development — Integrated Gradients

= Gradient-based feature selection algorithm

* Integrated Gradients

" The problem of attributing the prediction of a neural network to its input features can be approximated by Integrated Gradients.

® Gradients of the output with respect to the input = a natural analog of the model coefficient, but breaks sensitivity

¥ _ 0F(y(@) ayi(a) , . , .
Gradsi (X) = f 9y (@) ala da : path integrated gradients o 1 aF(x %x(x—x )) . ] ] ) ]
Y (Xl X;j ) X mz ) . Approximation of path integrated gradients

0F(x)

: Gradient of F along the i-th dimension at x (i-th feature)

0xj Sensitivity related to changes in features = Feature importance
’ k »
| ¢ dat K-steps computation for enhancing the approximation (X X ,) % 1 Z 6F(x +r—n><(X—X ))
nput data i — Xj —
P 1 1 m 6xi
_ Forward Output
k compUtation Relative importance - True positive case, shot : 20948
x' +—(x—x") ._L(Of)-p( |x;, 6, D
m Vi T Texploy - POil%0,0,D) 2
[ Dtenoste | bl ipmhd
— 5 o
e » dy(x) » g =
o - S bcentr
ECE data e - ax % amrisr%:
TG = - - Differentiate input ! R
e - Backward Gradient related to input feature i £
[\ T - HCM
|£ | Time intarval: 10 ms i g
anl N“Mb‘ Deta potmh 30 computation a
{r,_j‘lr’-'hwh"“‘“ V) Neural Network HEATu!?(E
A 1) . . ..

. (Disruption prediction model) Bot

T\mnlnn‘r;lll:lo ms 0.0 0.2 0:4 0:6 0.8

Data point: 50 Relative feature importance



Results — Overall model performance

Fl-score

AUC
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Model performance with different prediction times compared with previous research

Evaluation of disruption prediction models in advance of the current quench

" Models: Transformer, CNN-LSTM, MLSTM-FCN, DilatedTCN

" |nput features: EFIT + Diagnostic data (same as previous slides)

® Data configuration (Features, sequence length, train-test set) and training strategies (Focal Loss + Deferred Re-weighting): equivalent

10
\ 0.8
- * —e = 06
2
wi
3
& 04
® Transformer
#® CnnlST™ 0z
® MLSTM-FCN
@ DilatedTCN
0.0
20.0ms 40.0ms 60.0ms 80.0ms 100.0ms
Prediction-time
10
0.8
m
g
04
@® Tansformer
® CnnlsTM™ 02
® MLSTM-FCHM
@ DilatedTCN
0.0
20.0ms 40.0ms 60.0ms 80.0ms 100.0ms

Prediction-time

]
®
[ ]
L ]

20.0ms

L ]
®
[ ]
*

20.0ms

Transformer
CnnlSTM
MLSTM-FCN
DilatedTCN
40.0ms 60.0ms
Prediction-time

80.0ms 100.0ms

Transformer
CnnLSTM™
MLSTM-FCH
DilatedTCN

40.0ms 60.0ms

Prediction-time

80.0ms 100.0ms

Model Number of parameters
Transformer 1,447,170
MLSTM-FCIN 1,898,370
CINN-L5TM 1,439,234
Dilated TCN 252,768

Transformer with prediction time equal to 50 ms

Trainset

Testset

DilatedTCN with prediction time equal to 50 ms

10

» normal
® disruption

Better generalization with DilatedTCN I :

® disruption
o normal

» normal
@ disruption




Results — Overall model performance

Fl-score

AUC
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Model performance with different prediction times compared with Bayesian approach

* Evaluation of disruption prediction models in advance to the thermal quench

®  Models: DilatedTCN, Bayesian-DilatedTCN

®" |nput features and data configuration: same as previous slide

No significant difference of model capabilities

10 Dilated TCN with 40 ms
N—b‘\’ ‘. M | g
08 IRl e  disruption
0.6
8 4
v
F
& 04
——
: Minimum prediction 92 -
@ DilatedTCN time > 40 ms @ DilatedTCN
@ Bayesian-DilatedTCN . ® Bayesian-DilatedTCN
0.0
10.0ms 20.0ms 30.0ms 40.0ms 50.0ms 10.0ms 20.0ms 30.0ms 40.0ms 50.0ms
Prediction-time Prediction-time
1.0

F\e:, 0.8

Testset

1.00
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0.25
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0.0 1

Bayesian Dilated TCN with 40 ms

e normal
e disruption 1
LI 18 11 0 |,

Is Bayesian not useful?

=
g
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@ Bayesian-DilatedTCN ® Bayesian-DilatedTCN
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Results — Simulations for continuous disruption predictions
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= Simulation result for predicting disruptions in shot 20948 (1)

* Predicting occurrences in advance to thermal quench and detecting indirect causes from LM disrupted experiment

Setting: Bayesian Dilated TCN + prediction time 40ms + Locked mode plasmas (shot 20948)

Successful prediction + q95 and LM signals show high feature importance: detecting causes also possible

/K T
1
L)
L}
1
1
1
1
1
1
T T T T — T
0 2 4 6 10 12
T
batap
L)
L]
L]
0 2 4 6 10 12
0 2 4 6 10 12
T
/ \N qds
1
L]
L]
\i—
1
1
1
1
T T - T
0 2 4 6 10 12
time(unit:s)

ECE(unit:KeV)

Disruption prediction with shot : 20948

T 1.0 T
—— ECEO8 : —— disrupt prob
—4 ECE13 i —— threshold(p = 0.5)
—— ECE18 ! -—- flattop (t=2.993)
”4— ECE24 ! -=- TQ(t=10.582)
—— ECE26 ! --- CQ (t=10.606)
—— ECE32 i
L+ ECE37 0.8 |
—— ECE42 |
ECE54 !
| — Ecee3 :
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—— ECE73 |
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1
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0.0 : T

time(unit:s)

2 4 6 8 10
time(unit:s)

Input features

Input signal importance can be computed
directly within the disruption predictions

qo
q95
ipmhd
kappa
tritop
tribot
betap
betan
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bcentr
rsurf

g95 and LM signals have
high feature importance!
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Disruption was successfully predicted in
advance to thermal quench with 40 ms.

035

Relative feature importance
Page 19 P@E




Results — Simulations for continuous disruption predictions

= Simulation result for predicting disruptions in shot 20948 (2)

Disruption probability curve and time-varying feature importance near the disruptive phase — thermal quench

10

0.8 4

0.6

—— disrupt prob

—— threshold(p = 0.5)

——- flattop (t=2.993)
—=—- TQ (t=10.582)
——- CQ (t=10.606)

0.4 1

0.2 1

0.0

8 10

Feature Importance

Input features with high importance: q95 (40ms) - q95, ECE, BOL (30ms) - 95, ECE, BOL, LM (20ms) = 95, ECE, BOL, LM (10ms)

Probable situation: Precursor (locking) = Current profile affected - Te decrease - radiation increase - thermal quench

TQ —40ms Main feature: q95

Current profile flattening

Te drastically decrease (ECE)

v Main feature: LM, BOL

TQ - 10ms
ECE(Te) + Locked mode + Radiation

|

Thermal quench
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Discussion — Disruption prediction and uncertainty computation

= Uncertainty computations for several cases: True alarms, False alarms, Missing alarms

* Aleatoric and Epistemic uncertainties of disruption predictions for feasible cases

®  True positive case (True alarms): Low uncertainty + High average probability, good generalization with True positive data

® False positive case (False alarms): the rate can decrease by constraining the upper limit of uncertainties

® False negative case (Missing alarms): completely misunderstanding the way to predict disruptions - extending input signals or

other relevant features should be used.

Disruptive phase - True Positive case, shot : 23004 Disruptive phase - Missing alarm case, shot : 21205

Disruption Naormal Disruption Normal
259 25 A
254 25 4
20 20 A
20 20
«»n 154 n 15 A w w
i) ) . il
a a a a
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o m m ]
w w w w
= 10 = 101 = =
10 10
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5 5
0 T T T T 0 T T T T 0+ T T T o] T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Output(probs) Output(probs) Output(probs) Output(probs)

Low uncertainty + High average probability High uncertainty + High average probability
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w
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N
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L
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o
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=
o
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Disruptive phase - False alarm case, shot : 31572

Disruption Normal

30 1

254

201
Ui
[+
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£ 15
v
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104

5

T T T T 0 T T T T
0.0 0.2 04 06 0.8 10 00 02 04 06 0.8 1.0
Qutput(probs) Output(probs)

High uncertainty + Relatively low probability
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Discussion — Disruption prediction and uncertainty computation

Trainset

Testset

w250 4

& 200

Count

= Analysis for aleatoric and epistemic uncertainty distribution for TP, FP, and FN cases
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Low confidence about
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Low generalization for
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Question: How to reduce FN and FP
without a decrease in TP?

Option 1. FP{ and FN, but TPJ,
Option 2. FNJ, and FP, as TP4
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Discussion — Disruption prediction and uncertainty computation

* Improvement by fine-tuning thresholds of models

* Fine-tuning thresholds of model output and aleatoric uncertainty to maximize F1 score

m  Setting: evaluation on test dataset + Bayesian Dilated TCN + TQ 40 ms

"  Finding the optimal thresholds for model output and aleatoric uncertainty = Increase of F1, Precision, and Recall T
u_

uuuuuuuuuuu

‘ Model output >threshold & aleatoric uncertainty < au-threshold: disruptive
Model output <= threshold & aleatoric uncertainty >= au-threshold: disruptive

Model output >threshold: disruptive

Threshold n_wﬁhold ] F1 score Precision Recall
{output) (aleatoric uncertainty)
0.5 - 0.588 0.837 0.619
0.95 0.05 0.823 0.873 0.936 N . /
\ Disruptive g
\ /

1000

Threshold

075

0975
070
0.950
0.65
0.925
060
0.900
055

0.875
050

0.850
045

040 0.825
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Discussion — Feature importance and main signals for predictions

= Analysis of feature importance: estimation of main signals for predicting disruptions

* Estimation of main signals related to disruption prediction from integrated gradients for TP, FP, and TN cases

count

The top 5 main signals with the highest integrated gradients were selected for all predictions.

Main signals: plasma current, Bolometers, Major radius, ECE profiles, q0, q95

Input signals with high feature importance for true alarms and low feature importance for missing alarms are imperative.

400 1

300 -

200 1

100 1

ases
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BOL
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Causes

RC DL
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Discussion — Feature importance and main signals for predictions

= Case study: Locked mode disruption shot
* Top 5 main signals for the experiments with a special case: Locked mode disruption case
= Shot list: 20941, 20945, 20947, 20948, 20949, 20951, 20975, 20977
® No false alarms observed + Profile information (ECE + 95, q0) and triangularity (top and bottom) important
®  Bayesian Dilated TCN predicts some shots (20830, 20904, 20948, 20949, 20951, 20975, 20977, 20978, 20980, ..)

" Possibility of estimating the indirect causes of disruptions

CAses
mm TP
20 1 W FN
mm FP

count

|]_
DL tritop  bcentr  kappa q9s betap aminer BOL  ipmhd TCI betan HA v HCM rsurf ad LM JHEATING RC ECE fribot nG li Page 25 P@E
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Conclusion

Not only current quench, but thermal quench can now be predicted via multiple diagnostic signals and Dilated TCN.

Bayesian neural networks can provide aleatoric and epistemic uncertainty that enhance models’ precisions: False alarm rates can

decrease with a rule-based approach utilizing uncertainties.

Direct feature importance computation with integrated gradients allows the model to detect the indirect causes of disruptions

within predicting disruptions.

Analysis of causes of disruptions estimated by Bayesian models with specific experiments will be conducted.

- An arose question: Can the Bayesian model map the relation between the causes (signals) and precursors of disruptions?

Shot
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2018
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2018
2018
2018
2018

4
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Appendix — Bayesian Neural Network

= Bayesian Neural Network

Weights as random variables: Finding the optimal weights = Maximum a posteriori (MAP) weights

WMLE = argmaxy, log P(D|W)

* Bayesian by Backpropagation (Charles Blundell et al, 2015)

6" = argmingKL[q(w|0)||P(W)] — E4[logP(D|W)] = argmingF(D, 6)
Variational inference: intractable in general cases, but variational approximation by MC sampling

can reduce the computational cost and handle intractability.

F(D,8) = zlogq(wm) —logP(w) — logP(D|w)

20+ 57
£ Algorithm 104 Rlgorithm
] 1.8+ Bayes by Backprop Bayes by Backprop
o Dropout Dropout
] Vanila 5GD 5 Vanila 560
124
- - . /]
Figure 1. Left: each weight has a fixed value, as provided by clas- 03 I L | P o PPR——
sical backpropagation. Right: each weight is assigned a distribu- ¢t 0 GM TP oo =

Epochs
tion, as provided by Bayes by Backprop. .
P y bayes by Prop Test error on MNIST as training progresses,

Charles Blundell et al, 2015

Trained weights of the neural networks,

Charles Blundell et al, 2015 Charles Blundell et al, 2015

I R R R

Conventional approach (Frequentist view): weights of the neural networks are trained by maximum likelihood estimation (MLE)

WMAP = argmaxy, log P(W|D) = argmaxy, log P(D|W) + logP (W)

Gaussian variational posterior

. Sample € ~ N(0,1).

Letw = p + log(1 +exp(p)) o€

. Let @ = (u, p).
. Let f(w,f) =log g(w|#) — log P(w)P(D|w).
. Calculate the gradient with respect to the mean

_Of(w,0)  Of(w,0)

A, = -
F aw ap

(3)

Calculate the gradient with respect to the standard de-
viation parameter p

_Of(w,8) € af(w, )

A, = . 4

e ow 1+ exp(—p) dp @)
Update the variational parameters:

P — ol (3)

p—p—al,. (6)

P(w) = Hﬁ..-\."[wjm.af) + (1 = mN(w;]0,03), (7)

i



Appendix - uncertainties

= Computation of the uncertainty

* Aleatoric uncertainty vs Epistemic uncertainty

* Aleatoric uncertainty: uncertainty induced by the data noise, due to the random nature of the physical systems

* Epistemic uncertainty: uncertainty induced by model weights, related to the probabilistic distribution of the model weights, due

to the lack of knowledge of the systems (a low generalization of the model)

Var,[P(y*|x™)] =

Eqly'y™"] - Eqly1E Ly 1" =|f [diag [E,[y"]] - Ely

1Eply

17 go(wIDYdw|+ [ |Eply] — Eqly ]| [Eply™]

T
— Egly]| gelwiDldw

Aleatoric uncertainty

Epistemic uncertainty

* Aleatoric uncertainty decreases with the increase of dataset, however epistemic uncertainty requests to refine the model

* We can calculate epistemic uncertainty from the Bayesian approach, thus we can get more accurate and reliable disruption

prediction with considering Epistemic uncertainty.

V= 0 0.1 0.2 0.3
aleatoric = (0.00099897  0.00099885  0.00099875  0.00099838

Aleatoric uncertainty computed by Bayesian VGG on MNIST dataset, Kumar Shridhar et al, 2019

Var, (p(y™|z™)

T T
. 1 e
Z iag(pe) = pe By + 7 ) _ (e — ) (Be — P)

' e

aleatoric epistemic

where p = + 51, p; and p; = Sofplus, (fu, (z7)).

Simple computation of aleatoric uncertainty and epistemic uncertainty, Kumar Shridhar et al, 2019
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