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Introduction

Plasma disruption

1 Definition

¢ Global and sudden losses of plasma which result in abrupt termination with massive
magnetic and thermal energies and consequently transfers harmful damages to the

device[1].

e There are 4 phases in disruption phenomenon : Pre-precursor phase, Precursor phase, Fast

phase, Current phase

e Many different precursor events and quench events are possible and induced by different

physical mechanisms[2].

* Two basic causes of disruption

o Low q disruptions : g, > 2

Density limit disruptions :
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Introduction

Plasma disruption

1 General process of disruptions

The evolution of an unstable current profile leading to the growth of a tearing mode

(m =2 mode being particularly important)

The nonlinear growth of the tearing mode

A sudden relaxation of the equilibrium : current profile being flatten and dramatic loss of
confinement with a collapse of plasma temperature - Thermal quench (TQ)

The total current decays - Current quench (CQ)

The increased toroidal E-field associated with increased plasma resistance generates runaway m\

i P

electrons, which carries a large current and sometimes persists after CQ
Both the loss of plasma energy and the current decay induce currents in the vessel which can

produce large forces on the vessel.
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Fig 1, J.Vega et al, 2022, Nature Physics
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Introduction

= Plasma disruption

1 Characteristics of plasma quench in the KSTAR tokamak

* There was the linear dependence between ICQR and plasma current less
than 0.6MA, but ICQR was saturated as increasing plasma current more
than 0.6MA - exponential structure estimated

* Larger discrepancy between the LCQR and ICQR : due to the long tail at
the level of less than 30% of plasma current induced by the contribution
of the Runaway Electrons as reported in JET

* The current quench rate does not linearly depend upon the magnitude

of plasma current.

*|CQR : Instantaneous current quench rate, evaluated by exponential fit
* LCQR : Linear current quench rate, evaluated by the linear slope
* CQR : Current quench rate

[BAK, J. G., et al. Characteristics of plasma current quench during disruptions in the KSTAR tokamak. 2018]
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Introductio

= Plasma disruption

1 Characteristics of plasma quench in the KSTAR tokamak

* Due to the long tail, the current quench curve had a double
exponential decay structure with faster and slower R/L times.

* The slower slope might be due to the formation of the RE plateau at
the lower plasma current under 0.1MA in the phase of the quench.

* The RE plateau had small slope which was different from the RE plateau

with almost constant level, reported in the JET.

[BAK, J. G., et al. Characteristics of plasma current quench during disruptions in the KSTAR tokamak. 2018]
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Introduction

= Disruption prediction

1 Importance and Limitation

* Disruption carries large amount of magnetic and thermal energy loss and causes harmful damages on the device.
— the prediction, avoidance and mitigation of disruption is prerequisite for tokamak fusion.

* Conventional approaches by MHD theory and simulation have remained limitations.
—> Disruption is highly non-linear dynamics with complex interaction of different physical processes.

* Data-driven approaches based on a posteriori observation can be alternative for disruption predictor

=  Machine Learning : Random Forest, Catboost, Xgboost, Light GBM, GBM, Decision Tree Classifier, SVM

= Deep Learning : Neural Network (e.g. FRNN, https://github.com/PPPLDeepLearning/plasma-python)

Disruption predictor model based on Deep Neural Network
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Introduction

= Motivation : Why use video data?

1 KSTAR IVIS data : Real-time Image sequence (Video) data

Disruption dataset

Disruption frame

Duration

Tokamak visible image sequence recognition using nonlocal [
spatio-temporal CNN for attention needed area localization™

Giil Kwon *, Hanmin Wi, Jaesic Hong

Gantrol Tem, Noionai Fuson Ressarrh instt, Dogeon, Souh Korea

AETICLEINFO

Keywords: th ICT, WE TS o study thist was cood ndrnc wplore the frasibility of d

Tolanl viShls Jnage dagnosle cyen
Deep leaming
Voo elaselierion

1. Inrraduction

The in-vessel wiotble inspeerion cystem (IVIS) & 1ed for mondtoring
the plasma and interior of the vess=l in the Eorean Superconducting
Tobaniok Advanced Research (KETAR) device. Uning dhe Image acquivel
from the [VIS. the experiment participants analyze images to obeain
information, such as the chape and locadon of the plasma. It is dought
that the images generata the IVIE eonain more imformaton thar has
not yet been discoversd ticm o the shape and location of the
plasma Pardcipants in K5T experiments have only analyzed cne
tmage at 3 time to abezin th by manually
each image |1 ). Rather than analyzing only the sate informarion | uch
a3 the plasma pozinen and shape) of the plasma cbeained from a single
Emage at 2 specific point in time, we can better understand the state of
the plasma if we abko analyze the monon informadon {such ag the
plazma pasition or shape change] that the plasma moves aver time
Moton information ean be caleulared by obraining dsmamic fearres
(such as pivel displocement between owo frames, change in 23
pinels between two frames| that appeas oves time. Howeves, dy-
namie fearure: were difficult ro find manually, as was previously done

by researchers, becase the amount of 1mage dam &3 very large, and
dynamic features appeasing in image sequences are more difficult to
eaprure than 3 abrained stancally from a single image. The 1vis

at 210 framesss, 15.75 MB/3) g 1 colored programmable proge ezalve
scan charge-coupled deviee OCD camera [1], The IVIS produces many
Images, and these Images nust be analveed berween chot intervals ro
rhat the anakyais resules can be apphied to the plazma control of the next
chot When the plasms pulse length is 2 300 shot, the eperator must
examine §3,000 images by hand to analyze the plasma starus (RSTAR
milestone s achieving o 20-300s leng-pulse H-made operation).
Therefore, it s pecessary to develop an appreach that can analyze the
dynamic characrerisnes of images by recognizing a sequence of images
over time. In thiz paper, we developed an IVIS image sequence classifier
using deep leaming for a feanbilicy cest mn developmg a program that
amalyzes the dynamic characy
&0 test iz pecformance. To clas
mflated 3D convelution neew 1
convolution metwork By inflating the kgne] of the 2D convolution
nemwark (ConviNets). we can make 130 from 2D ComvMers. 130 i widely

of image sequence: fram the VIS

Giil Kwon et al, Fusion Engineering and Design, 2021

Distance

Video data contain spatial-temporal information including time-varying position and
shape of plasma.

Vertical Displacement Event may be captured from video directly.

In the computer vision area, there are many implemented codes which show high
performance with several tasks (e.g. Video Action Recognition, Video Prediction)

Kwon et al used video data to classify the disruptive event and showed the neural network

recognized disruption image using relative change in brightness from the plasma area.

Page 8 pﬁE
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Introduction

= Related work

1 Research for predicting disruptions with deep learning

LETTEK
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Predicting disruptive instabilities in controlled
fusion plasmas through deep learning
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o Tuge buraing ph such e the

International T’hun\nml-l(m Experimental Reactor (TTER)
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reliable predictions for machines ather than the one on whichit
was trained —a crucial requirement for future large reactors that
cannot afford Cur

N ivaining daka to b 5

saale to
d . Trained i dl data from the
lllycl takamaks in the United States i bt # and the warld
Furopean Torus, JET ), our method canalso be applied to specific
taskes such as predictinn with long warning times: thisapens sp the
possibilivy ef moy hﬁ inmr puuelw dmupum pmﬂulun (1 mh«
reactor contrel
potential for deep Itulun; num.cd:me progres bn fusiun-energy
scionce and, more penarally, in the underst anding and prodiction of
complex physical systems.
Tokamaks use strong magnetic ficlds 1o confine high temperaturs
l‘]&mas.w(j\:h: zeal of creating the conditions for extractmg power
from the resulting fusion reaction in the plasma’. However, the
thermal and magnetic enerzy in the lokamak an drive DJa<ma insla-
hilities that lead to di a central
challenge facing practical power praduction from 1l'\|r‘1r|||<|ras
Disraptions abs aptly destry the plasne’s magnssic comrsensen, thas
terminating the fasion resction and rapidly depositing the p
into Lhe confining vessel™ (see the sectionon '
in the Supplementary Informaticn for details) The resulting thermal
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sullbchent warning tene’, 4 disrepon mbigation systen (DM
techniques such as mesive gas o shatiored pellet injection, <
iriggered. The LS terminates the discharge but substantially reduces
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response Eme of the DS and may bcr(d.nr ed m the future through
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Imaice Computing.
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= Paper : Predicting disruptive instabilities in controlled fusion plasmas through deep learning

= RNN-based deep learning algorithm with 0-D signals and 1D profiles

=  Predictive performance : successful prediction of disruption prior to 30ms

= Cross-machine experiment also proceeded : D3D, JET(without 1D profiles)
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Fig 1, Julian Kates Harbeck et al, 2019, Nature

Fig 2, Julian Kates Harbeck et al, 2019, Nature
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Introduction

= Related work

1 Expansion and Variation : Application with different Neural Network architectures and data modality (type)

Disruption prediction using a full
convolutional neural network on EAST

B H Guo'“7, B Shen', D L Chen', C Rea'(", R S Granetz', Y Huang', L Zeng'

H Zhang', J P Qian', Y W Sun'( and B J Xiao'~

! Institute of Plasma Physics. HFIPS, Chinese Academy of Sciences. Hefei 230031, People’s Republic of

China

? University of Science and Techaology of China. Hefei 230026, People’s Republic of China
¥ MIT Plasma Science and Fusion Center, Cambridge, MA 02139, United States of America
4 Chongging University of Posts and Telecommunications, Chongeing 400065,

People’s Republic of China

E-mail: edalong @ipp.ac.cn and yachuang & ipp.ac.cn

ctober 2020, revised § November 2020
Accepled for publication 18 November 2020
Pablished 17 December 2020

Abstract
T this study, a full convolutional nevrul network

CrossMark

is wrained on 4 lurge database of experimental

BAST data to classify dismuptive discharges and distinguish them from non-dismprive
discharges. The database contains 14 diagnostic parameters from the ~10% discharges
(disruptive and non-disruptive). The test set contains 417 disrupuve discharges and 009
non-disruptive discharges, which are used 10 evaluate the performance of the model. The resulis
revenl that the true positive (TP) rate is ~ 0,827, while the false positive (FP) rate is ~0.067
This indicates that 72 disruptive discharges and 67 non-disruptive discharges are misclassified
1 the test set. The FPs are investigated in detail and are found w emerge due w some subtle
disturbances in the signals, which lead 1o misjudgment of the model. Therefore, hundreds of
nan-disruptive discharges from training set, containing time shices of small disturbances, are
artthicially added into the traming database [or retraining the model. The same test et 1s used 1o
assess the performance of the improved model. The TP rate of the improved model increases up
to (L875, while its FP rate decreases to 0.061 Overall, the propased data-driven predicted model
exhibits immense potential for application i long pulse fusion devices such as [TER.

Keywords: plasma, disruption prediction, desp learning, convolutional neural network

{Some figures may appear in colour only in the online jowrnal)

1. Introduction

Disruption evenls are an mevitable and prominent 1ssue that

muet e meenlvad 1 encirs the imnlameniation of CERETR

[2]. However, for mitigation 1o be effective, a cerain response
time needs to be considered. On EAST, the response time of
the MG system. which is a main component of the dismup-

fian matisation cvetem T irosanng @ entaring this eore e

EEE TREANSACTIUNS ON FLASMA SCIENCE fpreprint}

Deep Learning for Plasma Tomography and
Disruption Prediction from Bolometer Data

Diogo R. Ferreira. Pedro J. Carvalho, Horacio Fernandes, and JET Contributors

Abstract—The use of deep learning is Facilitoting a wide range
of datn processing fasks in many areas, The analysis of fusion
data is no exception. since there is a need to process large amounts
of data collected From the diagnostic systems attached to a fusion
device. Fusion data involves images and time series, and are
a natural candidate for the wse of convelulional and recurrent
nearal networks. In this work, we deseribe how CNNs can be nsed
o reconstruct the plasma rudiation profile, and we discuss the
potential of using RNNs for disruption prediction hased on the
sime fnpul data, Both appreaches have Been applied at JET wsing
data from a multi-channel diagnostic system. Similar approaches
can he applied to other fusion devices and dingnostics.

Tndex Terms—Nuchear Fusion, Plisma Diagnostics, GPU Coni-
puting. Deep Learning

L INTRODUCTION

Deep leaming ([T has become the staie-of-the-art approach
1 many problems, especially these related 10 image process-
ing and natwral language processing. Convolutionz] neural
networks (CNNsj have been cxtremely successful i image
classification |2 3], 1mage segmentation |4 5] and object
detection [6 (7], w cite only a few exumples, On the other
hand. renrrent nevral networks (RNNs) have been used for
speech recogniion [§ (91, language mode [0 (10| amd
machine tanslation [12 [13], amoeng other applications,

In general, 1t could be said that CNNs ane appropriatc
for problems mvolving images and compuler vision, whereas
RNNs are especially nsefol for text and other sequential data,
including time scrics [14]. However, this disfinction is not

clear-cul since, for example. 1L s possible o analyze images
with ENNs [13]. it is possible w perform sequence leaming
with CNNs [06], and there are hybrd models combining
features from both CNNs and RNNs [17].

For the purpose of this wo

 BESEE B

ill focus on two
s

Here, we focus on JET (Joint European Torus), a D-shaped
tokamak with o major radivs of 2.96 m and a minor radius of
1.25-210 m. JET has a vast assortment of diagnostics, inclod-
n;

gnetic couls o measure plasma current and instabilitie s,

uerferomeiers und reflectometers W measure plasma density,
Thomson scattering te determine the electron temperatune,
spectioscopy o measure lon emperature, and X-ray cameras

Lo measure electromagnetic adistion, wmong others,

In this work. we will be using on a specific diagnostic, the
bolemeter system [18], which measures the plasma radiation
on a poloidal cross-section of the fusion device. The signals
collected from the bolometer system can be used 1o monitor
the plasma stote across an entire pulse. Several phenomena,
such as impurity transpor and accumulation al the plasma
core, can be detecied from the bolometer signals. Since these
impuority-related phenomena ore one of the most frequent
precursors of dismuptions at JET, this diagnostic plays an
unportant rale 10 dismuption studies as well.

The data coming from this diagnostic is the basis for womo-
graphic meonstructions that provide a 20 image of the plasma
radiation profile. The meconstruction process isell s time-
consuming. However, with ¢ CNN trained on a large collection
of sample wmograms, it becomes possible to produce those
resulls much faster and with high accuracy.

In addition, the bolometer signals can be used to study
dismption precursors. With a RNN trained on these signals,
it is shown that bolometer data can provide a nseful inpat for
disruption prediction, both in terms of probabality of disruption
and time ren o disruption.

The paper is stucwred as follows. Sectio provides a
briel overview of the bolometer system, whene the data 15
¢ from, and of the tomographic method used at JET w
reconstruct the plasma radiation profile. Section ([Tl describes
the CNN that has been developed for plasma tomography, and

Disruption predictor based on neural

network and anomaly detection on J-TEXT

W Zheng', Q@ Q Wu', M Zhang'*, Z ¥ Chen' , Y X Shang”, J N Fan-,
Y Pan’ and J-TEXT Team'

' Internztional Jomt Research Laboratory of Magnesic Confinernent Fusion and Plasma Physics, State Key
Loboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electrome
Enginecring, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of
China

*School of Electrical and Electronic Engincering. Huarhong University of Science and Technology.

Wuhan 430074, People’s Republic of Chima

CrussMark

E-mail: shengwel @hust edu.cn and thamgming @hust educn

Received 10 October 2019, revised 19 December 2019
Accepred for publicobon 13 January 2020
Published 25 February 2020

Abstract

Disruption prediction is essential for the safe operation of a large scale tokamak. Existing dsmption
predictors based on machine leamng techniques have good predicion perfonmance, but all these
methods need large traming datsers inclucing many disnaptions to develop their snccesstul prechiction
capability. Future machines are unlikely to provide enough disruption samples since these cause
excessive machine damage and the predicion models nsed are difficult to extrapolate to a machines
that the predictor was not tramed on. In this paper, a disruption predictor based on a deep learning and
anomaly detzction technique has been developed. It regards the disruption as an anomaly, and can
leam on non-disruptive shots only. The model is tmined to extract the hidden feammes of various non-
disruptive shots with a convolutional neural network and a long-shot term memory (LSTM) recurrent
neural network. [t will predict fie future rend of selected diagnostics, then using the predicied future
trend and the measured signal to caleulate an outher factor 0 determine if a disniption iz coming. It
was tesicd with FTEXT discharges in flat top phase and can demonstate comparable perfommance to
current machine leaming dismipton predicion techniques, without requiring a disruption daia set This
could be applied to future tokamaks and reduce the dependency on disruptive ex periments.

Keywords: major disruption, disruption prediction, deep lsarning, anomaly detsction

(Some figures may appear in colour only in the online journal)
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Introduction : Basic concept

Prediction and Forecast

Prediction : Data-driven approach

= An estimate of future events from subjective considerations
= Probabilistic statement

=  Based on intuition

=  The results of predictions are dependent upon unique representations

Forecasting : Model-driven approach

= Definitive and specific statement (Deterministic)
=  Based on statistical model

= The results of forecasting are replicable

Forecasting

Prediction

An estimation of future events by incorporating and casting forward data and systematic manner(physics)

Page 11 p@E



Introduction : Basic concept

= Machine Learning and Deep Learning

* Machine Learning : A set of methods that can automatically detect patterns in data - Data representation

* Components : Dataset (Training data + Test data), Probabilistic model, Objective function, Algorithm (How to learn)

* Goal of machine learning : to learn a mapping from input data distribution to output data distribution by optimizing the objective
function with given dataset and learning algorithms -» to Learn probability distribution p(y|x, D)

* Deep Learning : A subset of machine learning algorithm which use Artificial Neural Network as a function approximator

Artifical
y Intelligence \
Traditional programming 2 Neuron
Data — > / ' \
(input) - ; / “ Y P
s Computation ——> Results . Mach!ne % o Wi b bias Activation
- (output) / Learning — N\ bk function
. . ~ Output
input Xz " _sz X U | (p() Vi

Machine Learning Approach

Data . —_— . / /° Summation
(input) Computation ——> Program \ Deep \

Results —_— Learning L 7 Xim o+ Wi |
(output) / y

output
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Introduction : Basic concept

Machine Learning and Deep Learning

Dataset : A set of data point collected from given prior data distribution

Model : A set of mapping functions which generate the mapping from input data to output data or probability distribution.

Objective function : A set of targets as formal measures of how good the models are. Training or Learning is equal to

optimization process of objective function. (We also call it as ‘Loss function’)

Algorithm : A set of methods for optimizing a well-defined objective function given from the task

Stochastic Gradient Descent (SGD)

" Momentum method

Adagrad
Adam

Design a model|

f

Y

Grab new data

L

Y

Update the
model|

W

Training inputs

Supervised
learning

!

Training labels

Training process per batch data

Check if good
enough

Input

Model

Output

Simple process for supervised learning
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Introduction : Basic concept

= Disruption prediction and Deep Learning

* To learn the disruption prediction is to learn whether the state of the plasma estimated from the given data is disruptive or
non-disruptive - Binary classification

* We can train the neural network with supervised learning

®  Input: Plasma 0D, 1D data, IVIS data, Tomography ... , — —— 10
3:k , < = non-disruptive
®  Qutput : Disruption probability, Binary label (0 : disruptive, 1 : non-disruptive) ol x_disruptive H
£ 0 0.8
5
=
UNSUPERVISED - ~ 0.6°g
- LEARNNG CLUSTERING =
roup and interpret o
data based only 9 . 0.4 =
on input data ’ =
MACHINE LEARNING A
[ CLASSIFICATION 0.2
SUPERVISED i 3
LEARNING '
" Develop predictive 0.0
precel besad o0 listh i ) ' 2.0 3.0 40 50 60 '
sEa i REGRESSION P3'031ﬁ_6'207T'0'393 90.385
3 g .
. s Fig 15. from 2022 Review of Data-Driven Plasma Science, Rushil Anirudh et al
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Introduction : Basic concept

= Disruption prediction and Deep Learning

The objective for binary classification : to maximize likelihood which means conditional probability of output y with given input x

The objective function (loss function) : Cross Entropy Loss

* Maximization of likelihood = Minimization of cross entropy loss
mée\xz logP(y;|x;,6,D) > mein 2 —y;log P(y;|x;,0,D)
_ exp(9))
Vi T Texptop - P Oilx1,60,D)
- . 10
0.9 - r
.......... 3.0 ' 0.8
D.B . .‘ --------- N z
Output layer - —— train_|oss 25 06
0.7 1 === val_loss S 2
== val acc 2 04z
0.6 - Z
1 0.2
0.5 -
Input iayer L0~ 20 30 40 6.0 Hoo
0 2 4 6 3 10 63.031KvG,‘JGT'I"D.:}QS‘S,D.BSE

epoch
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Introduction : Basic concept

= Issues on Deep Learning

* The goal of machine learning : to learn general patterns / data distribution with given data

* If we increase model complexity or use few data compared to the model complexity, generalization error increases

* Generalization : Fundamental issue of machine learning about how to discover general patterns from given data

* Overfitting : the phenomenon of fitting closer to the training data than to the underlying distribution (prior distribution)

* Underfitting : the phenomenon of limiting the reduction of training error due to the low complexity of model or small size of data

-— —_—

Underfitting Optimum Overfitting

Loss

Generalization loss >

X
Underfitting Just right! overfitting

Training loss

Complexity: low Complexity: High
Sample bias: low Sample bias: High

Model complexity ARE
Fig 3.6.1. from Dive into Deep Learning, Aston Zhang et al Page 16 '
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Introduction : Basic concept

= Issues on Deep Learning

A good statistical model minimizes the loss by finding the optimal balance between bias and variance

* Factors for underfitting

(1) High bias and low variance (2) Not enough features of training dataset (3) The model is too simple (4) Noise on data

* Factors for overfitting

(1) High variance and low bias (2) The model is too complex (3) Not enough size of training dataset

Bias Squared Variance Noise

E[(y — fG =E[(f (x) — f)*]|+V[f(x) ]+ [VIe]

E[(y — fDI=E[(f(x) — f(x)4] +V[f(x) 1+ V[e]

1.01 '"II' variance ra i i . 4
= higge . Low bias High bias
__,'_ v ,’
T 08 7= MSE P s o _ _ .
2 Y f s e L AN e Bias Squared o Variance Noise
= B S f Sl Low A [ N Y o P
E E \:‘\ { /’,’ - | ’ ) |’u J
£ 06 o P variance | | e
o I e o ” & . =
g e ~ > % Noise: caused by datasets
% 0.4 . p o
g x e
L1} 0.2 ol '\‘\ . /J/
= P S, High [[/&&N)) P
S o i variance \ \ \\¢e". 7/ /
00 --—==" g S | :
0.0 0.2 0.4 0.6 0.8 1.0

model complexity
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Introduction

= Aims of this research

- Step 1. Development of plasma disruption prediction model using Deep Learning
= KSTAR IVIS Video data : Image sequence data / 210 fps and 480 X 640 resolution
= KSTAR 0D data : Time-series data / 20kHz sampling rate
=  Multimodal data : IVIS data + OD data

- Step 2. Analysis of the experimental results

= Experiment for model comparison
= Experiment for different prediction time
= Experiment for different learning algorithms (due to imbalance data distribution)

= |mage localization with attention rollout

Visualization of the latent vectors for single-modal(Video, OD) / multi-modal (Video + 0D) data
- Step 3. Real-time prediction with test shot
=  Continuous prediction with video / 0D / Multimodal data page 18 P(ERE



Introduction

= Short summary

Single-modal data (Video, OD) / Multi-modal data(Video + OD)
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Metho

= Method

« Dataset setup

= KSTAR IVIS Video data : Image sequence data / 210 fps and 480 X 640 resolution
= KSTAR 0D data : Time-series data / 20kHz sampling rate
= Multimodal data : Video data + OD data

- Model setup
= Model for video data: SlowFast / R2Plus1D / ViViT

= Model for OD data: Self-attention 1D CNN — LSTM

= Model for multimodal data (Video + OD) : Tensor Fusion Network

« Learning Algorithm

= Objective / Loss function : Cross Entropy Loss, Focal Loss, LDAM Loss
= Learning algorithm for imbalance data distribution : Re-Sampling, Re-Weighting, Deferred Re-Weighting
= Learning algorithm for multimodal data : Gradient Blending, Deep CCA (not complete) Page 21 P@RE



Method : Dataset setup

= KSTAR IVIS data for Video Model (SlowFast, R(2+1)D, ViViT)

e KSTAR In-vessel Visible Inspection System(IVIS) : Video data used for monitoring the plasma in a vessel

e 82 video data with 210 frame per seconds collected from KTSAR IVIS were used for training and evaluation

e We set the last frame as a disruptive event and considered the last second frame as a current quench state.

e 21 frames as sequence length, resize as 128 x 128 due to GPU memory limit
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Ima Y d Page 22 I CARE
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Method : Dataset setup

KSTAR 0D data for 1D CNN-LSTM model

* Plasma0D data: I, By, By, K, Wiot, Ne, Ui, Qos, Otri

e Different sampling rates from experimental data: 20kHz, 50kHz

e Linear interpolation with constant time interval (=19.04ms, 4 times of video fps)

e Scaling : Robust scaler was used for ignoring anomality

12 (3} (%)
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Method

: Dataset setup

= Muti-modal Dataset for disruption prediction

e KSTAR IVIS video data : 84 frames as sequence length, 4 frames as frame interval

e Plasma 0D data : same as input data of single-modal model (1D CNN —LSTM)

e Time-synchronization : Due to delay issue from video capture process induced by the limit of IVIS Cam device, We re-

matched video frames and 0D data from backward with respect to time.
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Method : Model setup

Development of plasma disruption prediction model using Deep Learning

 Vision model for KSTAR IVIS video data

=  Convolutional Neural Network (CNN) - based model : SlowFast, R(2+1)D

= Transformer — based model : Video Vision Transformer (ViViT) = Efficient for small dataset with effective regularization

(A) SlowFast (B) R(2+1)D
[ty _ W | e (2+1)D co;'lvolutjon
(2+1)D Convolution
} (2+1)D Convolution

0 . (2+1)D Convolution
. - °
L] L]

(2+1)D Convolution

Concatenate([x-slow, x-fast]) Spatio-Temporal Pooling

Different objective functions : Cross Entropy Loss, Focal Loss, LDAM Loss

Different learning algorithms : Re-Sampling, Re-Weighting, Deferred Re-Weighting

(C) ViViT

. o .
v

Embed to tokens

Oisto

it
\ fhschw) /

| L || < Embed
J i taken
Spatial speticl

ansformer Transhormer

Encoder fncod

Temporal Transformer Encoder
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Method : Model setup

= Development of plasma disruption prediction model using Deep Learning

« Self-attention 1D CNN - LSTM model for KSTAR 0D data

LSTM : To extract temporal components

Self-attention : Attention mechanism applied to LSTM output

NI S | SOftmax( ’:_!_“j ’ 4’ ) UL

Different objective functions : Cross Entropy Loss, Focal Loss, LDAM Loss

Different learning algorithms : Re-Sampling, Re-Weighting, Deferred Re-Weighting

1D CNN : To extract spatial components (=correlation between variables)

e —

i |

-
1D Convolution : Spatial

N

LSTM : temporal
i

Self-Attention

&

[

Multi-Layer Classifier

)

1D CNN — LSTM model : 1D Convolutional Neural Network (1D — CNN) + Long-short term memory (LSTM)
1D CNN = LSTM

Hidden vector h \
(B,H,D)

|

|

Batch multiplication

(8,0,0) ' /




Method : Model setup

= Development of plasma disruption prediction model using Deep Learning

« Tensor Fusion Network for Multimodal data (Video + OD data)

Tensor Fusion Network

= KSTAR Multimodal data : Video + OD data Element-wise matrix multiplication with different modalities
ViviT 1D CNN — LSTM
. Video Encoder 0D Encoder
Network for 0D Network for video

> |

data data
| o s
; v

[ Embed to tokens |
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Method : Learning algorithms

= Learning algorithms for imbalance data distribution

* Since the time scale of disruption is relatively short compared to the operation time, there exist severe data —
imbalance (disruptive vs non-disruptive) problem.

* Uniform class distribution : Cross Entropy Loss is enough - Not effective for long-tailed distribution

10 4
dataset

| gur2] dis0
: B dur2l dis5

Class 1 minority /(Ilustcr J \ ]
Cluster) #1071
5 ]

A 8 ]

Cluster 1

e

Class 2 majority

10°

Disruptive Mon-disruptive
Disruptive vs Non-disruptive
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Method : Learning algorithms

= Learning algorithms for imbalance data distribution

* Method for learning imbalanced datasets : Boosting vs Alternative objective functions

* Boosting : Meta learning technique designed to improve classification performance

= Re-Sampling : Over-sampling the minority classes or Under-sampling the frequent classes
= Re-Weighting : Assigning weights for different classes or different samples to compensate the importance
= Deferred Re-Weighting : 2-stage method (1-stage : training without re-weighting , 2-stage : training with re-weighting)

* Alternative objective functions

" Focal Loss : reshape the cross entropy with modulating factor (1 — p)* to compensate the importance for hard samples

Focal Loss = — Z(l — pi)Ylogp;
= LDAM Loss : reshape the cross entropy for maximizing class margin according to label-distribution

exp(z, —4,)
LDAM Loss = — z log where A; = ——5=
exp(zy — Ay) + 3. exp(zy) n?:

] Page 29 P(ERE




Method : Learning algorithms

= Learning algorithms for imbalance data distribution

* Learning algorithms can generate significant different results with
general imbalanced dataset (CIFAR, open-source dataset)

* Learning algorithms also affect the data representation of the neural
network : more significant for higher feature dimensions + severe

imbalance distribution

1 T
05 y 2 os
Dataset | Imbalanced CIFAR-10 | Imbhalanced CIFAR-100 2 2 4
1 5
Imbalance Type | leng-tailed | step | Tlong-tailed | step i 3 j‘ 8 55
Imbalance Ratio | 100 | 10 | 100 | 10 | 100 | 10 | 100 | 10 4 i </
ERM 2064 1361 [ 3670 17.50 | 61.68 4430 | 6145 4537 o = ‘
Focal [17] 2062 (33413600 16366159 4422 | 6143 4654 LA
[.DAM 26.65 13.04 | 3342 1500 | 6040 43.09 | 6042 43.73 (2) ERM train
CB RS 2945 1321 | 38.14 1541 | 6656 44.94 | 6623 4692 3 2 3
CB RW [ 1] 2762 1346 | 38.06 1620 | 6601 4288 [ 7869 47.52 05 } s
CB Focal [11] 2543 1290 | 39.73 1654 | 6398 4201 | 80.24 4998 A 4
HG-DRS 27.16 1403 | 2993 14.85 - 05 2
LDAM-HG-DRS | 2442 1272 | 2453 12.82 - - - - " 5
M-DRW 24904 1357 | 2767 131715949 4378 ] SR80] 4472 -
LDAM-DRW 2297 1184 | 23.08 12.19 | 5796 41.29 | 5464 40.54 8 1 : 0
(e) ERM val

[Learning Imbalanced Dataset with Label-Distribution-Aware Margin Loss, Kaidi Cao et al, 2019]
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Method : Learning algorithms

= Learning algorithms for multi-modal data

* Muti-modal networks are often prone to overfitting due to increased capacity : Multi-modalities often cause negative effect

* Different modalities overfit and generalize at different rates : training multi-modal data can cause sub-optimal problems

* Gradient-Blending : Training multi-head model (training single-modal model + multi-modal model) with additional
optimization process of overfitting-to-generalization-ratio for blending weights

* Tensor Fusion Networks : improved architecture to learn intra-modality (uni-modal interaction) and inter-modality
(interaction between different modality) dynamics

qér R q__é ". ----- L: = Ir'jm'ildutimi.t.us.'i 2 {V[_‘,T = V‘C,*j §r> "

‘%i %i II".II LY = Train Loss OGR = ( <V£*,§')

L S k Y pm—— !

= & b LAG = LY — LY, T * 2

3@ X " T i i o | (VLD = VL 3, wavr)

: S \\fm—-fﬁ - * i o [( (VL*, 3, wivr)

S S < I T ki1

:® O E D Lbtend = Z w; L,

et ! = Epoch i—

Unimodal Early Fusion I Unimodal Tensor Fusion !

What Makes Training Multi-modal Classification Networks Hard?, Weiyao Wang et al, 2020,

Tensor Fusion Networks for Multimodal Sentiment Analysis, Amir Zadeh et al, 2017

PARE
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Method : Analysis

= Data Embedding and Latent vector

* Neural Network transforms raw data into a suitable internal representation or hidden vector with dimension compression.

* The output data computed from NN contains compressed feature information : We call this data as ‘Latent vector’.

Data compression
Embedding : Transition to low-dimensional space

/ \\
Classification
Deep
Input data > Learning —> I;af:(:: Regression
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Reconstruction
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I 3 — i)
! -
= -
| | ] -
‘J

—
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Method : Analysis

= Visualization of latent vectors in 3-dimension space

We use Principal Components Analysis (PCA) to reduce the dimension of the latent vector to 3-dimension for visualization

The distance between latent vectors = similarity

The distance between disruptive data and non-disruptive data will increase if the model predict and classify the disruptive

and non-disruptive data successfully.

e disruption
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Method : ML pipeline for experiments

Process for training and evaluation

Database setup
+

Data preprocessing

Model Training

Evaluation

-

/

Image seque
{batch size, sequence s g!h ha Ihighl width)

l]JII

Metric(F1 score)
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0D data
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Method : ML pipeline for experiments

Metrics

It is important to predict disruptive phase to alert prior to the disruption event without false /missing alarms.

So, We should monitor both precision and recall score for training and evaluation.

t
Precision : the ratio of true positives over the predicted positives Precision = i ffp
Recall : the ratio of true positives over the real disruption Recall — _tr
tp + fn

Macro-F1 : Mean of the F1 scores for each class - Main metric for this research
Confusion Matrix : Error matrix which reports the number of True-Positive(TP), False-Positive(FP), True-Negative(TN),

False-Negative(FN)

Predicted condition

. 2 precision - recall tp
Total population . . F, = — - = 2. — = 1
PN Positive (PP) Negative (PN) recall~! + precision- precision +recall ¢y 4 5 (fp+ fn).
5
& Positive (P) True positive (TP) | False negative (FN)
8
g Negative (N) | False positive (FP) @ True negative (TN) Page 35 P(ERE
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Result

= Experimental setup

*  Cross Entropy Loss : Baseline for comparison

* Focal Loss: r =2, Re-Weighting with inverse class frequency

* LDAM Loss : Rescaling class-dependent margin loss with 0.5, Re-weighting with inverse class frequency
* Training Epochs : 128 for all experiments

* Learning algorithms for use
®  Re-Sampling : Over-sampling the disruptive data
®  Re-Weighting : Assigning inverse class frequency to weight loss functions

" Deferred Re-Weighting : 4-stages Re-Weighting (update 8 and weight w; = 1_;1]. with respect to epochs)

* Data Properties

®  Image size : 256
®  Cropsize: 128

B Sequence length : 21 frames for video data, 21 points for OD data, 84 frames / 21 points for multi-modal data

®  Augmentation : Flip, Shift, Brightness, Contrast, Blur for video data Page 37 P(ERE



Result _

= Experiment list

* Video data experiment

®  Model comparison
" Different prediction time
®  Different learning algorithm

®  Continuous prediction for test shot

* 0D data experiment

" Different prediction time
®  Different learning algorithm

®  Continuous prediction for test shot

*  Multi-modal data experiment

®  Different prediction time

Page 38 ﬁRE



Result

= Experiments for disruption prediction only with video data

« Model comparison
® Video Vision Transformer is effective with relatively small model size and high performance.

=  We use ViViT for next experiments.

Model Accuracy F1 score # of parameters (;;?ﬁi;’ti%m) (Di?ﬁj%ati"on)
R(2+1)D 0.99 0.99 18,847,195 1.0 0.96
SlowFast 0.99 0.97 13,910,842 0.96 0.92

VIVIiT 0.99 0.98 1,513,026 0.96 0.96

- Different prediction time

= Severe decrease of performance is observed after 19.04ms.

" Due to abrupt decrease of precision, it is hard to identify disruption precursor before thermal quench occurs.

Distance / Prediction time Accuracy F1 score (DIsArL?p?ion) ([I;:‘;Eips:%r;) (Dilgﬁji:at:lon)
1(frame)/ 4.762(ms) 0.99 0.99 0.98 1.0 0.96
2(frame) / 9.524(ms) 0.99 0.99 1.0 0.96 1.0
3(frame) / 14.286(ms) 0.99 0.93 0.94 0.84 0.88

4(frame) / 19.04(ms) 0.92 0.569 ‘ 0.755 0.11 ‘ 0.58 P(-@
5(frame) / 23.810(ms) Page 39 \ ARE
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Result

= Experiments for disruption prediction only with video data

Different learning algorithms

®  Since there is limit to predict disruption prior to over 23.810ms with video data, we compare model performance prior to
prediction time as 14.286ms with different learning algorithms.

= Re-Sampling enhances both precision and recall for predicting disruption in every case while Re-Weighting should be used with
Re-Sampling or used as Deferred Re-Weighting.

®  Focal Loss with Deferred Re-Weighting and Re-Sampling reached the best scores.
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Result

= Experiments for disruption prediction only with video data

- Continuous prediction for test data - shot 21310

= We have shown that the ViViT — based model can predict disruption without false / missing alarms as a continuous disruption

prediction for shot 21310 from test dataset.

®  The result below is for prediction time 4.762ms and 14.288ms
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Result

= Experiments for disruption prediction only with 0D data

- Different prediction time

= With OD data, it is obvious that the model can predict the disruption with higher precision and recall compared to those for only
video data - 0D data have more critical features for predicting disruptions
® |tis shown that predicting disruptions prior to over 57.14ms with OD data is even possible if ensemble method or cross-validation

training for larger dataset is applied - Disruption prediction before Thermal Quench

Distance / Prediction time Accuracy F1 score (Diéar\l?p?ion) (girserﬁi;ti%% (Diir?ﬁii”on)
4(frame) / 19.04(ms) 0.99 0.967 0.941 1.0 0.88
8(frame) / 38.08(ms) 0.99 0.99 0.99 0.99 1.0
12(frame) / 57.14(ms) 0.99 0.957 0.969 0.89 0.94
16(frame) / 76.16(ms) 0.95 0.959 0.970 0.90 0.95
20(frame) / 95.2(ms) 0.97 0.877 0.852 0.83 0.71
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Result

= Experiments for disruption prediction only with 0D data

Different learning algorithms

"  We also have compared model performance prior to 57.14ms with different learning algorithms since the realistic minimum

prediction time for avoidance and mitigation is about 40ms.

"  Focal Loss with Deferred Re-Weighting and Re-Sampling or Focal Loss with Re-Sampling reached the high scores.
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Result

= Experiments for disruption prediction only with 0D data

- Continuous prediction for test data - shot 21310

=  We have also shown that the 1D CNN — LSTM can predict disruption without

false / missing alarms as a continuous disruption prediction for shot 21310

from test dataset.

®  Since 1D CNN — LSTM can predict the disruption as early as 57.14ms with high
performance and relatively small model size, the real-time disruption
prediction with OD data might be more efficient than video data only.

= However, 0D data has relatively large time interval with compared to video

data (about 4 times) which makes practical issue for real-time disruption

prediction.

®  The result below is for prediction time 19.04ms, 57.14ms and 95.2ms.

Shot 21310, 0D data and disruption probability curve
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Result

= Experiments for disruption prediction with multi-modal data

- Different prediction time

®  Condition : Tensor Fusion Network (ViViT + 1D CNN — LSTM) + Gradient Blending
® Disruption prediction performance enhancement : Using multimodal model for disruption prediction can help model

precision and recall.

Distance / Prediction time Accuracy F1 score Di AD? [I:_reclstlpn D.REEE:!I
() : Video Data Only (Disruption) (Disruption) (Disruption)
4(frame) / 19.04(ms) 0.94(0.92) 0.785(0.569) 0.87(0.755) 0.49(0.11) 0.79(0.58)

8(frame) / 36.08(ms) 0.97 0.851 0.865 0.69 0.75
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Discussion

= Experiments for disruption prediction only with video data

- Visualization for 3D latent space
®  Using Principal Component Analysis(PCA), We have visualized hidden vectors from the last layer of the Vision Video Transformers

® Asthe accuracy higher, the model separated the disruptive and non-disruptive data more clearly.
= With increasing prediction time, the difference between disruptive and non-disruptive data has decreased.
= Disruptive precursors or features might not be detected when the prediction time is over 15ms.

= Condition : ViViT with DRW-RS and Focal Loss, prediction time as 4.76ms, 9.52ms, 14.28ms, 19.04ms
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Discussion

= Experiments for disruption prediction only with video data
- Visualization for attention mapping

®  We have visualized the attention mapping which implies the 2D image of model weights used for feed-forward process.
"  The model weights focus on the specific part of the image if the prediction time is short - Some spatial criteria of the plasma

might be learned from training model by video data.

"  The model weights just focus on the shape of the plasma more than the other side of the image as prediction time increases
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Discussio

= Experiments for disruption prediction only with 0D data

- Visualization for 3D latent space

®  We have also visualized hidden vectors from the last layer of the 1D CNN — LSTM using PCA.

® As the accuracy higher, the model separated the disruptive and non-disruptive data more clearly.

= With increasing prediction time, the difference between disruptive and non-disruptive data has decreased.

®  Conditions : 1D CNN - LSTM with DRW-RS and Focal Loss, prediction time as 19.02ms, 38.04ms, 57.14ms, 76.16ms, 95.8ms

Prediction time : 19.02ms

Prediction time : 38.04ms

Prediction time : 57.14ms
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Discussion

Experiments for disruption prediction with multi-modal data

Visualization for 3D latent space
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Conclusion

e Inthisresearch, we propose the disruption prediction with video data in KSTAR using Deep Learning.

e We have developed video-based model and shown that predicting disruption from video data is limitedly possible as
early as up to 15ms.

e Severe increase of false positive alarms occurs from video-based model when prediction time is over 20ms due to the
lack of physical information.

e Meanwhile, we have found that the OD data is important to predict the disruption from the previous experiments based
on 0D data which implies that it is possible to predict the disruption as early as up to 95ms only with 0D data.

e Since video and 0D data contains different physical information, we propose multimodal learning using video and 0D
data which learns features of disruptions from video and 0D data synchronously.

e We have improved the prediction performance with Tensor Fusion Network and Gradient Blending algorithm.

e Inthe future, we will proceed additional experiments for large dataset obtained from different devices and proceed the

model compression for real-time disruption prediction from the real experiments.
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