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▪ Deep Learning and Reinforcement Learning

❏ Current progress on deep learning and reinforcement learning

• Machine Learning framework and application: Vision / Language / Robotics / Medical …. → New paradigm

• GPU computation and Neural network (Forward-Backward algorithm): Caffe, TensorFlow, Pytorch

• Fusion with Deep Learning framework and Reinforcement Learning: ChatGPT, DQN, GPT, Dreamer, … 

• What is the next step?

Transportation? Trading? Marketing? Fusion
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▪ Purpose of the research

❏ Tokamak plasma autonomous operation based on reinforcement learning 

• Concept: Control by Reinforcement Learning + Virtual KSTAR environment + Stability (Optional)

• Under the virtual KSTAR environment, we can find out the near-optimal way to approach the ideal operation scenario

• How to implement the virtual KSTAR environment

• How to control the virtual KSTAR environment

Neural Network

(Function approximator, Simulator)
Reinforcement Learning

(Decision maker / Feedback controller)

Neural network: A computing system for approximating the mapping function based on forward-backward algorithm

Reinforcement learning: One of the machine learning concept for dynamic decision making



• A computing modeling tools as structures comprised of densely interconnected adaptive simple processing elements 

• Easy to model the nonlinear and complex relation between input and output

• Relatively low inductive bias: better generalization in large dataset

• Main processes in neural network

• Universal approximation theorem : Neural network can represent a wide variety of functions when given appropriate weights.
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▪ Basic of deep neural network

❏ Neuro-computing and artificial neural network

▪ Forward propagation: A computation and storage of intermediate variables including outputs and loss.

▪ Backward propagation: A calculation of the gradient of neural network from output to input using chain rules.
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▪ Basic of reinforcement learning

❏ Basic components

❏ Learning process for the case of policy gradient method

• Agent: Object that takes decisions based on the rewards and punishment

• Environment: Physical world in which the agent interacts

• Reward: Feedback from the environment

• Action: Mechanism by which the agent transitions between states of the environment

• State: Current situation of the agent ( Information about the world)

• Objective: To find the optimal policy which achieves the optimal reward

• Reward function:

• How to optimize:
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▪ Related work : 0D parameter control using RL

❏ Feedforward beta control in the KSTAR tokamak (Jaemin Seo et al, Nucl.Fusion 61, 2021)

• Deep Neural Network(LSTM) based simulator for virtual KSTAR environment

• Feedforward control for KSTAR 0D parameter using Deep Reinforcement Learning

• Not only validation under the virtual simulator but also the real experiment proceeded in this paper

• The RL agent cannot avoid MHD instabilities, which cannot be predicted by the LSTM network

Jaemin Seo et al 2021 Nucl. Fusion 61 106010
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▪ Related work : plasma shape control using RL

❏ Magnetic control of tokamak plasmas through deep reinforcement learning (Google Deepmind, Nature, 2022)

• Plasma boundary shape control by modifying the PF coil current + TF coil current using reinforcement learning

• Policy gradient method : MPO (Maximum a Posteriori Optimization)

• Nonlinear Feedback controller + Policy-based method : Plasma boundary shape control

Google Deepmind, Nature 2022
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Jaemin Seo et al 2021 Nucl. Fusion 61 106010

0D parameter control

Shape control

▪ The final aim of the research: Tokamak plasma autonomous operation

Multi-agent reinforcement learning
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▪ Research scheme: 3-stage development

❏ Stage 1: 0D parameter control 

❏ Stage 2: shape parameter control 

❏ Stage 3: 0D parameter + shape parameter control 

• Purpose: To control 0D parameters for achieving the high performance in virtual KSTAR environment

• Control variables: NBI heating, EC heating, 𝐼𝑝, 𝐵𝑐, Shape parameters (𝜅, 𝛿, 𝜖, 𝑅𝑔𝑒𝑜, 𝑎𝑚𝑖𝑛𝑜𝑟)

• Controlled variables: 0D parameter (𝛽𝑛, 𝑞95, 𝑙𝑖, 𝑞0) 

* Control variable: input signal that we can control (조작량)

* Controlled variable:  target signal that has to be control (제어량)

• Purpose: To control shape parameters using PF coils and Heating resources

• Control variables: PF coil current, NBI heating, EC heating, 𝐼𝑝, 𝐵𝑐

• Controlled variables: shape parameter (𝜅, 𝛿, 𝜖, 𝑅𝑔𝑒𝑜, 𝑎𝑚𝑖𝑛𝑜𝑟)

• Purpose: To control the (1) plasma boundary shape and (2) beta-N for achieving the high performance

• Control variables: PF coil current, NBI heating, EC heating, 𝐼𝑝, 𝐵𝑐 + Additional control variables

• Controlled variables: 0D parameter (𝛽𝑛, 𝑞95, 𝑙𝑖, 𝑞0) + shape parameter (𝜅, 𝛿, 𝜖, 𝑅𝑔𝑒𝑜, 𝑎𝑚𝑖𝑛𝑜𝑟)
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▪ Implementation of the environment for virtual tokamak operation

❏ The rule of virtual KSTAR environment

Plasma 

state
Control

Plasma 

state
Reward

Virtual Environment

• Reinforcement Learning generally needs reward for learning the optimal policy

• To make the agent understand the dynamics of the environment, information of the target’s next state is needed.

Function 1. To simulate the plasma state after the control

Function 2. To provide reward from the previous control 
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▪ Function 1. Simulation of the plasma state 

❏ Neural network based simulator for predicting the next plasma state

• Data architecture for 0D parameter predictor • Data architecture for shape parameter predictor

Time series forecasting / Auto-regressive method Method 1. Time series forecasting / 

Auto-regressive method
Method 2. Solving GS equation numerically
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▪ Function 1. Simulation of the plasma state 

❏ Neural network based simulator for predicting the next plasma state

• Conventional methods: Consistent but high computational cost, limit on calibrating the experimental data error

• Data-driven methods: Validation of experimental data error in training process + Faster due to end-to-end computing. 

• Since the dynamics of the tokamak plasma is hard to understand, data-driven approach is needed.

• Attention mechanism based neural networks are used: Transformer(Ashish Vaswani et al, 2017), SCINet(Minhao Liu et al, 2022)

Transformer architecture, 2017 SCINet architecture, 2022Simple process of data flow in neural network framework
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▪ Function 2. reward engineering based on the plasma state

❏ Reward engineering for 0D parameter control

• Reward: key component for agent to provide the feedback for learning the optimal policy

• A good reward function would increase the output reward when the agent approach to the target values, but would 

decrease the reward when the agent provides wrong actions.

• The reward must be affected by the current plasma state and the target values.

• The range of the reward function can affect the training process of the agent.

• The range of the reward function can also affect the stability of the learning.

• Tanh function : the range of the output value is bounded + slope increase near the original point (target value = actual value)

𝑅𝑒𝑤𝑎𝑟𝑑 = tanh(
1

𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 × 0.001 + 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 − 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 2
)

1. Ignore NaN

2. Consider target value scale 

▪ Case 1. the range is too large: it can be difficult for the agent to learn the policy since it discern subtle differences between actions. 

▪ Case 2. the range is too small: it may not provide enough guidance for the agent to learn an optimal policy.
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▪ Integrated RL environment for virtual KSTAR plasma

❏ Integration with neural network and reward function

Environment for RL - implementation

• Integration: Neural networks for 0D parameter prediction and boundary shape prediction + Reward calculator 

• Action: control parameters including NBI, EC heating, and shape parameters / PF coil currents

• State: plasma 0D parameters (𝛽𝑛, 𝑞95, 𝑙𝑖, 𝑞0) / plasma shape parameters (𝜅, 𝛿, 𝜖, 𝑅𝑔𝑒𝑜, 𝑎𝑚𝑖𝑛𝑜𝑟) 
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▪ Deep Deterministic Policy Gradient (DDPG)

❏ Actor-Critic based deterministic policy gradient algorithm

• Policy : A way of behaving for achieving the objective 

• Action can be determined by the current state of the environment

• Stochastic vs Deterministic

• Using replay buffer to manage the trajectories (=past dataset) efficiently 

for training process.

• Ornstein-Uhlenbeck process: temporal correlated noise for exploration

• Useful for continuous action space, but sensitive to hyper-parameters



Objective function for DDPG

Action-Value function + Entropy term

Optimal policy: Maximization of the reward + Maximization of the entropy term

RL algorithms : finding the optimal policy for 0D parameter control
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▪ Off-policy Soft Actor-Critic (SAC)

❏ Off-policy algorithm for learning a maximum entropy policy

• Actor-Critic based algorithm + Maximum entropy objective + Double 

Q Learning

• Maximum entropy objective: exploration ↑+ capture near optimal 

easily

• Double Q-Learning: 2 separate critic networks used for preventing 

over-optimistic value estimates in action-value function.

• Final objective: maximization of the expected long-term reward + 

long-term entropy

• This algorithm is one of the most efficient RL algorithms in real-world 

robotics

a
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▪ Validation for virtual KSTAR environment

❏ Dataset and model setup

• # of KSTAR experiments: 8882 (15138 ~ 31996)

• Training samples: 300,668

• Validation method: Multi-step prediction

• Model / # of parameters: Transformer, 2,657,947

• Gaussian noise added for each input data in the training process: Robustness for new data + accuracy increasement

Single-step prediction Multi-step prediction

Models can predict more accurate values for long-term
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▪ Validation for virtual KSTAR environment

❏ Model performance for simulating the experiment in an auto-regressive way

• KSTAR shot # 30399 was used: initial 0D parameters + control values (NBI, EC, Ip, Bc, shape parameters)

• Input sequence length: 10 data points / 500ms

• Selected model: Transformer model

• Evaluation of test dataset: MSE : 0.064  RMSE : 0.241  MAE : 0.138  R2 : 0.870
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▪ 0D parameter control in virtual KSTAR environment

❏ Training curve of DDPG and SAC

• Target parameter: beta-n, 2.75

• Total episodes for training: 5000 episodes * different initial data used for each episode

• Memory buffer: Prioritized experience replay

• Stochastic environment: Gaussian noise added due to the stochasticity of real tokamak environment
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▪ 0D parameter control in a virtual KSTAR environment (deterministic)

❏ Comparison between RL control and real experiment data

• KSTAR shot experiment: 21747 * initial data for 0D parameters and control parameters are given

• Initial 0D parameters and control parameters are equal for both DDPG and SAC. 

• SAC and DDPG can control its controlled value(=betan) to be approached to the target value(=2.75), but both have 

different control strategies.
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❏ Comparison between RL control and real experiment data (Control value)

▪ 0D parameter control in a virtual KSTAR environment (deterministic)
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▪ 0D parameter control in a virtual KSTAR environment (stochastic)

❏ Comparison between RL control and real experiment data

• KSTAR shot experiment: 21747 * initial data for 0D parameters and control parameters are given

• Initial 0D parameters and control parameters are equal for both DDPG and SAC. 

• Both can not control the controlled parameter to be approached to the target value, and even the controlled 

parameter can not increase over 2.2.
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❏ Comparison between RL control and real experiment data (Control value)

• Severe noise in action (control values) is observed in DDPG case.

• Since DDPG is based on a deterministic policy gradient algorithm, it cannot find the optimal policy if the environment is stochastic.

▪ 0D parameter control in a virtual KSTAR environment (stochastic)
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▪ Issue 1. Is the KSTAR environment non-stationary?

• Stationary: the statistics or attributes are not changeable over time.

• Data distribution shift causes non-stationarity: the statistics of the variables change over time

• Non-stationarity makes the prediction of the 0D parameters difficult because there is no consideration for 

data distribution shift in the training process. 

• How to check stationarity in time series data (global): Augmented Dickey-Fuller test (ADF)

• How to detect change points in timer series data (locally): Maximum Mean Discrepancy (MMD)

MMD

Mathieu Sinn et al, AUAI, 2012

Detecting non-stationarity is fine…

But how can we design this non-stationary environment?

Does the network really learn the non-stationarity of the tokamak environment?
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▪ Issue 2. Is the KSTAR environment stochastic?

• Stochasticity: the property of being a random process

• Stationary process = stochastic process in which unconditional joint probability distribution does not change over time.

• Non-stationarity ≠ Stochasticity

• Since there are not enough measurements or variables which represent the KSTAR plasma state, the virtual KSTAR 

environment acts as a partially observable system: POMDP (Partially Observable Markov Decision Process)

• Latent variables which affect the next state of the plasma: noise/stochasticity

• Virtual KSTAR environment = Stochastic environment

How to learn optimal policy in a stochastic environment?

Yao Mu et al, ICCAS, 2020

Bayesian + Mixed RL architecture
Stochasticity causes a 

totally different result of 

the tokamak operation
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▪ Issue 3. Can the RL agent reflect the realistic control of the actuator in KSTAR?

• The actions (= control values, NBI, EC, Ip, Bc, ..) are bound by physical constraints in a real KSTAR environment, since the 

change rate of the actuator control is limited. 

• Method 1. Gaussian policy-based model can have bias induced by the bounded action range: Beta distribution?

• Method 2. The state transition probability may not satisfy the Markov Decision Process: the current RL algorithms can not 

guarantee their convergence in this situation.

Action change rapidly

𝒂𝒕+𝟏~𝝅(𝒂𝒕+𝟏|𝒔𝒕, 𝒂𝒕)

Action space is change over time

𝒂𝒕

The valid change rate of 

the actuator control

Out of range

Out of range

𝒂𝒕+𝟏~𝝅(𝒂𝒕+𝟏|𝒔𝒕, 𝒂𝒕)
𝒖𝒕+𝟏 = 𝒖𝒕 + 𝒂𝒕, 𝒔𝒕+𝟏 = 𝒇(𝒔𝒕, 𝒖𝒕)

Method 1. Action range clipping process

Method 2. Define action as a change rate of the actuator
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• In this research, 0D parameter control using reinforcement learning under the neural network-based virtual 

KSTAR environment proceeded.

• However, there are 3 main issues in this research.

• RL technique which aims for a stochastic environment is needed.

• Since the shape parameters are controlled values originally, the next stage of the research about plasma 

shape control using reinforcement learning has to proceed.

✓ Stochasticity should be considered in a virtual KSTAR environment.

✓ Non-stationarity also should be considered in a virtual KSTAR environment.

✓ The controller should reflect the realistic control that actuators can afford 



Thank You



Current status of the research

Page 30

▪ Research scheme: 3-stage development

❏ Stage 1: 0D parameter control 

❏ Stage 2: shape parameter control 

❏ Stage 3: 0D parameter + shape parameter control 

• Data collection : complete

• Code implementation : complete

• Experimental performance : complete

• Data collection : complete

• Code implementation : proceeding (GS solver / Reconstruction)

• Experimental performance : not yet

• Code implementation : not yet

• Experimental performance : not yet

Some improvement is needed!

Multi-Agent Reinforcement Learning

Numerical vs Data-driven


