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Conclusion
• For multi-targets control, it is necessary to consider the 

relation between controlled variables including 𝛽! and 𝜅.

• We should find the feasible set of policies and compare them 

to choose the optimal policy with our preference.

• MORL can find the Pareto-frontier set for multi-target control 

including plasma performance and shape.

• Virtual KSTAR environment based on NN-simulator and RL 

application can be used as a navigator for forecasting the 

feasible and optimistic way to achieve high performance. 

Dataset setup

Development of virtual KSTAR environment

Related work
• Seo et al[6] have explored feedforward beta control with 

a KSTAR simulator based on LSTM.

• Jonas et al [7] have shown the significant results on plasma 

shape control using MPO algorithm.

• Multiple 0D parameters control has been conducted by 

managing different target variables simultaneously with 

linear scalarization [8]. 

Basic rules of virtual KSTAR environment for RL
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1.1. Dataset for training Transformer based simulator

• Input: plasma state 𝛽! , 𝑞"#, 𝑙𝑖, 𝛽$, 𝜅, 𝛿, 𝑅, 𝑎 + controlled variables

* Controlled variables: 𝑃%&+ Z-pos of ECH + 𝑃'()+ 𝐼*+*& + 𝐼$

• Output: plasma state 𝛽! , 𝑞"#, 𝑙𝑖, 𝛽$, 𝜅, 𝛿, 𝑅, 𝑎

• Time interval between data points: 50.00ms

Aims of this research
• High performance: to find the optimal way to control 𝛽! ≥ 3.0

• Shape control: to control the shape with high performance

1.3. Dataset for training Plasma contour regressor

• Input: magnetic flux 𝜓 ∈ 𝑅,#×,#, plasma state: 𝛽! , 𝑞"#, li, 𝛽$, 𝐼$
• Output: magnetic axis (𝑟./01 , 𝑧./01), 256 contour points { 𝑟2, 𝑧2 , … , (𝑟3#,, 𝑧3#,)}

Reinforcement Learning for Multi-targets control
• Reinforcement Learning [4,5] offers a promising approach to 

discover optimal trajectories by data-driven and model-free methods.

• There is a Pareto-optimal for target variables in plasma control, 

indicating that single-objective RL has limits to find optimal policies.

Autonomous Tokamak Plasma Operation Control
• Achieving a high performance and stable plasma in a steady-

state operation is critical challenge for fusion reactors.

• Human trials in experiments alone are not effective in finding optimal 

conditions, due to operation limits[1] and instabilities[2,3].

1.2. Dataset for training Grad-Shafranov equation solver

• Input: plasma state: 𝛽! , 𝑞"#, li, 𝛽$, 𝐼$ + PFPC coil currents configuration

• Output: magnetic flux 𝜓 ∈ 𝑅,#×,#

1.4. Dataset for training the controller

• Input: plasma state: 𝛽! , 𝑞"#, li, 𝛽$, 𝐼$ + controlled variables from past

• Output:  𝑃%&+ Z-pos of ECH + 𝑃'()+ 𝐼*+*& + 𝐼$ for next step

Multi-Objective RL for tokamak plasma control
• For multi-target control, it is necessary to consider the 

relations between the controlled variables.

• We used Generalized Policy Improvement Linear 

Support (GPI-LS) [11] to find the set of Pareto-front for 

controlling 𝜷𝒏 and 𝜿 simultaneously in virtual KSTAR 

environment.

Concept of our research

• Integration: Neural Networks for predicting plasma state parameters + Magnetic flux + LCFS

• NN-based simulator: Transformer [9] based model for predicting simulator

• Modules for visualizing tokamak plasma: PINN [10]-based Grad-Shafranov solver + ResNet-based contour regressor

Reward Engineering: Reward calculation for target control

𝑅 𝑠! " = tanh(
1

𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒×0.001 + 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 − 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 #
)Reward function for 𝒕𝒂𝒓𝒈𝒆𝒕𝒊 at state 𝒔𝒕 :

• Reward: key component for agent to provide the feedback for learning optimal policy

• Linear scalarization used for converting multi-objectives as single-objective task

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑤𝑎𝑟𝑑 ==𝑤"𝑅 𝑠! "Linear scalarization for multi-target control: Single-objective reinforcement learning still 
valid under the linear scalarization

Development of PINN-based Grad-Shafranov equation solver

Development of ResNet-based Plasma contour regressor

Development of Transformer-based plasma state simulator

Simulation results

Generalized Policy Improvement Linear Support

• Mutual interaction between virtual KSTAR environment and RL controller is prerequisite.

• We applied Soft Actor-Critic algorithm[12] for finding the optimal way to approach target values.

• If Pareto-optimal situations, we can not find the optimal policy satisfying multi-objectives.

• Sample-efficient GPI-LS [11] used for searching finite space of corner weights → Pareto frontier 

Linear scalarization to find the optimal policy 
corresponding to the given weight vector

Given the set of policies, find the new weight vector that guarantee 
to achieve the maximum possible improvement via GPI-LS algorithm

• KSTAR shot 30399 for initial data + SAC control + Target: 𝛽! = 3.0, 𝜅 = 1.8 (SORL): Elongation X

• KSTAR shot 30399 for initial data + SAC control + Target: 𝛽! = 3.0, 𝜅 = 1.8 (MORL): Observation of Pareto-optimal
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