
Design Optimization of Tokamak Fusion Reactor
through Deep Reinforcement Learning

Fusion Reactor design optimization with single-step reinforcement learning

1)Jinsu Kim and 2)*Jaemin Seo

1) Department of Mechanical and Aerospace Engineering, Princeton University (wlstn5376@gmail.com)

2) Department of Physics, Chung-Ang University (jseo@cau.ac.kr)

2024. 05. 03



Contents

Design Optimization

• Objectives of design optimization

• How to approach

• Tools for design optimization

Related works

✓ Brute force algorithm: Grid search

✓ Generic algorithm: Stochastic global search optimization algorithm

✓ Reinforcement learning: Neural combinatorial optimization through RL

Fusion Reactor Design for DEMO

• Aspects of nuclear physics and engineering for designing the Tokamak reactor: Blanket, Coil, Armour

• Aspects of plasma physics for designing the optimal state operation: T, P, n, Ip, fbs,q, nG, beta, Tau, Pw

• Verification of the design parameters computation code 

• Airfoil Design Optimization

• Chip Design Optimization



Design Optimization

Conceptual design phase

Design optimization process

Conventional process



Design Optimization

Design variables

• Input parameter

• Must not depend on each other

• X = [x1,x2,x3,x4,…]

• The optimizer must be free to choose the elements of x independently.

• Each x should be bound for physical constraints



Design Optimization - Objectives 

• System performance

• Cost

• Uncertainty 

• Physical consistency

Objectives (targets) of design optimization

What we need

• Objective function: A quantity that determines if one design is better or not

• Constraints: Restrict design variables to be set on a feasible region

✓ Equality constraint

✓ Inequality constraint



Design Optimization - Issues

Multidisciplinary Design OptimizationMulti-modality



Design Optimization - How to approach

Fig 1.22 from Engineering Design Optimization Fig 1.24 from Engineering Design Optimization



Design Optimization - How to approach

• Surrogate models based on ML / Genetic algorithm: High computational cost

• Discrete design parameters vs Continuous design parameters: RL can handle both variables

• RL training process => directly finding the optimal solutions

Single-step reinforcement learning for design optimization



Related Works

Paper: Direct Shape Optimization through Deep Reinforcement Learning



Related Works

Paper: Direct Shape Optimization through Deep Reinforcement Learning

Design variables: 4 points 

Interpolation for Airfoil Design Configuration



Related Works

Paper: Direct Shape Optimization through Deep Reinforcement Learning

• Determine 4-points

• Interpolation for designing airfoil

• Compute the design performance (drag / lift coefficient)
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• Optimize the policy through Single-step PPO algorithm



Related Works

• Topology optimization through DRL for 2D material design

• Pixel -> discrete actions

• Input: 2D pixels => output: change of pixel flips

Paper: DRL for engineering design through topology optimization of elementally discretized design 
domains
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Designing a Nuclear Fusion Reactor



Designing a Nuclear Fusion Reactor

Poloidal plane of a Tokamak system

Reactor wall configurationPlasma operation condition

Objectives for designing a nuclear fusion reactor



Basic concept of our research

Overall framework

Reward = R(cost-params) + R(beta) + R(safety-factor) + R(density) + R(TBR) + R(bootstrap) + R(Q-factor)

• Definition of the custom rewards that represent the objectives (Cost + TBR + Operation limits + Q-factor)

• Training the policy network to learn the optimal policy to determine the best control parameters

Design optimization process through deep 
reinforcement learning

INPUT VARIABLES
 Aspect ratio 𝑨 (𝑅/𝑎)
 Elongation 𝜿
 Maximum Magnetic field 𝑩𝟎

 Blanket thickness 𝒃
 Electrical power output 𝑷𝑬

 Neutron wall loading 𝑷𝑾

 Plasma temperature 𝑻
 H-mode enhancement factor 𝑯

OUTPUT VARIABLES
 Major/minor radius 𝑹, 𝒂
 Plasma density 𝒏
 Plasma pressure 𝒑
 Plasma beta 𝜷
 Plasma current 𝑰𝒑

 Energy confinement time 𝝉𝑬

CODE

Based on
J.P.Freidberg

LIMITATIONS
 Greenwald density limit
 Troyon beta limit
 Kink safety factor limit
 (Bootstrap fraction)
 Lawson criterion

Fusion reactor design simulator

Single-step RL

How to apply

Reward contains design objectives (constraints from plasma physics and nuclear engineering) and performances (Q-factor + TBR)

▪ Small reactor size : cost reduction

▪ TBR > 1 : Fuel-efficient

▪ High Q (Ignition condition)

▪ Avoidance of the operation limits
▪ Density limits

▪ Beta limits

▪ Safety-factor > 2

▪ Neo-classicial bootstrap current > Operational requirement 
of bootstrap current

Design objectives and constraints



Step 1: Development of a Fusion Reactor Design Simulator

Structural design parameters determined 
through physical constraints

INPUT VARIABLES
 Aspect ratio 𝑨 (𝑅/𝑎)
 Elongation 𝜿
 Maximum Magnetic field 𝑩𝟎

 Blanket thickness 𝒃
 Electrical power output 𝑷𝑬

 Neutron wall loading 𝑷𝑾

 Plasma temperature 𝑻
 H-mode enhancement factor 𝑯

Design of the tokamak determined

Example of the simulation result



Step 2: Implementation of a RL based Design Optimization Code

INPUT VARIABLES
 Aspect ratio 𝑨 (𝑅/𝑎)
 Elongation 𝜿
 Maximum Magnetic field 𝑩𝟎

 Blanket thickness 𝒃
 Electrical power output 𝑷𝑬

 Neutron wall loading 𝑷𝑾

 Plasma temperature 𝑻
 H-mode enhancement factor 𝑯

▪ Small reactor size : cost reduction

▪ TBR > 1 : Fuel-efficient

▪ High Q (Ignition condition)

▪ Avoidance of the operation limits

▪ Density limits

▪ Beta limits

▪ Safety-factor > 2

▪ Neo-classicial bootstrap current > Operational requirement

Designed reactor

Input parameters (Action)

Simulation result (Next state)

Reward = R(cost-params) + R(beta) + R(safety-factor) + 
R(density) + R(TBR) + R(bootstrap) + R(Q-factor)

Deep Reinforcement Learning

Decision making = Optimal design parameters estimation



Reactor structure and configuration 

Default structure design and configuration – fixed during the optimization

• Main concepts for our fusion reactor
• Liquid type blanket: Coolant + Tritium breeding + relatively simple design

• Avoidance of the operation limits + High Q-factor + TBR > 1 + Low volume for reducing cost

• D-T fusion + ECRH & LHCD heating + H-mode plasma



Core Design

Plasma core profile: n, T, P

❏ Profile effects on high Q subignited Tokamak Fusion Plasmas

• The Q-value clearly expresses its dependence on the radial profile of T,N,P

• Same configuration for radial profiles of T,N,P referred from Friedberg et al.

• Parabolic profiles with numerical coefficient

❏ Effect of elongation

• Plasma current and elongation

• Beta and elongation

▪ Vertically elongated and D-shape cross-section allow much high beta values than circular ones

▪ Troyon beta limit: High elongation plasma allow the beta value higher

Both of these advantages have been demonstrated experimentally

up to elongations of k = 2.35: Set initial K = 1.7

▪ Vertical elongation of the plasma cross-section brings the increased plasma current

▪ Due to the increase of plasma current, the energy confinement time can also increase



Blanket Design

Breeder design and material

▪ Materials : liquid-type
o Lithium leads (Li17Pb83)

o Versatile: Coolant + Tritium breeding

o Lead : Neutron multiplier

o Corrosion: middle

o Chemical stability: less than other liquid materials

o Inboard shield thickness reduction / but the thickness of the blanket may increase

o Structures for additional coolant system would not be necessary

▪ Structures
o Structure type of TBM: CLAM designed by EU

o Breeder Inlet / Outlet: 300 / 480

o Breeder Maximum temperature: 543 + 273 K -> High enough

o Breeder coolant pressure drop : less than 0.8 MPa

o TBR : 0.43 -> using lead as a multiplier



Armor and Shielding

Armor design and material

▪ Material: Tungsten
o Thickness : 10 cm

o Good resistance for physical, chemical sputtering

o Tungsten exhibit pronounced surface morphology changes under He plasma exposure

o High radiational loss can be occurred due to high atomic number and induce instabilities

o Tungsten surface energy limit : 0.5MJ/m^2

▪ Material: Graphite
o Thickness : 10cm

o Neutron reflector and moderator for shielding the materials (TF coil)

o Located between the blanket and TF coils

o Good neutron-moderating properties and availability in large quantities

o Neutron reflection outside the blanket : enhancing TBR

Shielding design and material



TF coils and PF coils

Common steel
Maximum Tensile Strength : 600 [MPa]
Maximum current density : 20 [MA/m2]

2800 Maraging Steel
Maximum Tensile Strength : ~ 2700 [MPa]

HTS coil
Maximum current density : ~ 200 [MA/m2]

TF, PF coils
CAN BE MADE THINNER !

Ref. c = 0.44 [m]

TF coil thickness

Tensile 
Strength

Current
Density

Ref. c = 0.97 [m]

Ref. c = 0.66 [m]



Heating and Current Drive Sources

Heating and Current Drive – ECRH and ICRH

▪ ECRH
o Functions

o Plasma startup

o Heating for access to H-mode

o q profile control

o CD for steady-state

o Requirement
o Frequency : ~200GHz

o Power : determined by tokamak design

o Gamma : 0.15

▪ LHCD
o Functions

o Current is driven by lower hybrid waves in our cases

o High efficiency

o Requirement
o Considered coupling of the edge plasma and generator power : 0.4

o P > 4MW -> no experiment has ever coupled ICRF power into an H-mode

o Efficiency of LH klystrons : ~ 50%

o Power : determined by tokamak design

o Gamma : 0.3 - 0.4



Finding the optimal engineering parameters

Design optimization with single-step reinforcement learning

❏ Single-step reinforcement learning and design optimization

• Policy gradient method to find out the best design choice of the tokamak

• Control parameters: H, armor thickness, T, betan, elongation, aspect ratio, B-field, RF recirculated efficiency, electric power

• Conventional optimization method: hard to find out the optimal configuration (Multi-objective + High dimensional space)

Reward = R(cost-params) + R(beta) + R(safety-factor) + R(density) + R(TBR) + R(bootstrap) + R(Q-factor)

By customizing the reward function, we can optimize
our tokamak design with respect to any
design strategy!

❏ How to apply

• Definition of the custom rewards that represent the objectives (Cost + TBR + Operation limits + Q-factor)

• Training the policy network to learn the optimal policy to determine the best control parameters



Finding the optimal engineering parameters

Reward engineering for satisfying stabilities + maximum performance

❏ Stability

• Kink instability

• Troyon beta limit

• Greenwald density limit

❏ Design Performance

• High beta

• Low cost (proportional to volume)

• Bootstrap current ratio

𝑅𝑡 = 𝑎 × 𝑠𝑖𝑔𝑚𝑜𝑖𝑑
𝑥
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Design Optimization Results

Comparison between the reference (Friedberg) and the optimized reactor



Design Optimization Results

Comparison between the reference (Friedberg) and the optimized reactor
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