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Design Optimization
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Design Optimization

Design variables

Input parameter
Must not depend on each other

X =[x1,x2,x3,x4,...]

The optimizer must be free to choose the elements of x independently.

Each x should be bound for physical constraints

minimize f(x)
by varying x. <x; <x; i=1,...,n4

subjectto  gj(x) <0 j=1,...,ng

hi(x) =0 I=1,...,ny.
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X fr8h
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Design Optimization - Objectives

Objectives (targets) of design optimization
e System performance
e (Cost
e Uncertainty

e  Physical consistency

What we need

e Objective function: A quantity that determines if one design is better or not

e Constraints: Restrict design variables to be set on a feasible region

4 Equality constraint 21(x) <0 () = 0
v (active) f(x) (active) f(x)

\
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Design Optimization - Issues
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Design Optimization - How to approach

Optimization
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Design Optimization - How to approach

Single-step reinforcement learning for design optimization

e Surrogate models based on ML / Genetic algorithm: High computational cost
e Discrete design parameters vs Continuous design parameters: RL can handle both variables

e RL training process => directly finding the optimal solutions

ALGORITHM 1: Proximal policy optimization.

1 Initialize policy model parameters 6, value model parameters ¢ ;
2 For each episode,i=1,..., N do;
3 Based on current policy mg; for T time steps, collecting trajectories

{T} = '{Sh @t ‘rf}; 1 eplsude
4 Estimate advantage values A, = ¥y “'ry — Vi(s:); :

o= E . q
5 Zi.r:-t]"“}jrtr is the rollout pGliC},F; . Observation Agent Actions Reward Agent
6 V4 is given by the value network; : ]
7 }r € ({}, ]_) 5 Lhe discgunt fac[{_"r’ Whl'lf.h represen[s Ihﬁ inﬂuence ﬂf e '

future states on the current state; | Figure 4: Degenerate reinforcement learning framework used in this paper. One
8 Update by a gradient method (e.g., Adam) with respect to Jy: episode consists of a single control from the agent: the same initial observation is pro-
Ja = g: min[ mplagfs) 7 A, chp( Tlafs) e 4 E) ‘,it]: vided to the agent at the start, which in return provides an action to the environment. The

o (80/4:) Reia(4ef5) environment returns a reward value to the agent, and the episode is terminated.
where ¢ is a hyperparameter, ¢ = 0.2;

9 Update ¢ by a gradient method (e.g., Adam) with respect to Lg:

H(Z}" re — Vg 51))-

[




Related Works

Paper: Direct Shape Optimization through Deep Reinforcement Learning
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(d) Computed v, velocity field at Re ~ 600 around shape|—5—c| (the domain is cropped).



Related Works

Paper: Direct Shape Optimization through Deep Reinforcement Learning
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Design variables: 4 points

—

(a) Sort the provided points by ascending
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(d) Sample all Bézier lines and export for
mesh immersion

Interpolation for Airfoil Design Configuration

C Shape generation using Bézier curves

This section describes the process followed to generate shapes from a set of n, points
provided by the agent. Once the points are collected, an ascending trigonometric angle sort
is performed (see figure[11a), and the angles between consecutive points are computed. An
average angle is then computed around each point (see figure[I1b) using:

07 = abi_1;+ (1 — a)b; i,

with & € [0,1]. The averaging parameter « allows to alter the sharpness of the curve
locally, maximum smoothness being obtained for &« = 0.5. Then, each pair of points
is joined using a cubic Bézier curve, defined by four points: the first and last points, p;
and p; 4, are part of the curve, while the second and third ones, p; and p;*, are control
points that define the tangent of the curve at p; and p;, ;. The tangents at p; and p;, are
respectively controlled by #; and 8/}, , (see figure|L1c). A final sampling of the successive
Bézier curves leads to a boundary description of the shape (figure[11d). Using this method,
a wide variety of shapes can be attained.



Related Works

Paper: Direct Shape Optimization through Deep Reinforcement Learning

e Determine 4-points

Shape #5 e Interpolation for designing airfoil
e Compute the design performance (drag / lift coefficient)
9,
®
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Figure 4: Degenerate reinforcement learning framework used in this paper. One
episode consists of a single control from the agent: the same initial observation is pro-
vided to the agent at the start, which in return provides an action to the environment. The
environment returns a reward value to the agent, and the episode is terminated.



Related Works

Paper: DRL for engineering design through topology optimization of elementally discretized design
domains

e Topology optimization through DRL for 2D material design

y

e Pixel -> discrete actions
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Fusion Power Plant (FPP) System
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Designing a Nuclear Fusion Reactor

a) Magnetic field around the current b) Magnetic field by cylindrical curcular coils

Current

c) Magnetic field by toroidal current d) Twisted field line by b)and ¢)

coolant manifolds (d
(permanent)
8 upper ports (f)

(modules & coolant)

L 0

| 176 blankel
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(permanent) divertor plates (b) ~ 8 lower ports (h)
(2 yrs. hifetime) (divertor)



esigning a Nuclear Fusion Reactor

Objectives for designing a nuclear fusion reactor
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Overall framework

Basic concept of our research

Fusion reactor design simulator

Design objectives and constraints

INPUT VARIABLES

Aspect ratio A (R/a)
Elongation K

Maximum Magnetic field By
Blanket thickness b
Electrical power output Pg

Based on
J.P.Freidberg

OUTPUT VARIABLES
Major/minor radius R, a
Plasma density n
Plasma pressure p
Plasma beta 8

LIMITATIONS
Greenwald density limit
Troyon beta limit

Kink safety factor limit
(Bootstrap fraction)

Small reactor size : cost reduction

TBR > 1 : Fuel-efficient

High Q (Ignition condition)

Avoidance of the operation limits

Neutron wall loading Py, Plasma current I, Lawson criterion = Density limits
Plasmatemperature T Energy confinementtime Tg = Beta limits
H-mode enhancement factor H
= Safety-factor >?2
= Neo-classicial bootstrap current > Operational requirement
‘ of bootstrap current

Design optimization process through deep
reinforcement learning

Reward = R(cost-params) + R(beta) + R(safety-factor) + R(density) + R(TBR) + R(bootstrap) + R(Q-factor)

Reward contains design objectives (constraints from plasma physics and nuclear engineering) and performances (Q-factor + TBR)

How to apply

e Definition of the custom rewards that represent the objectives (Cost + TBR + Operation limits + Q-factor)

e Training the policy network to learn the optimal policy to determine the best control parameters



Step 1: Development of a Fusion Reactor Design Simulator

Example of the simulation result

Structural design parameters determined
through physical constraints

| Minor radius a :

Core Armor  Blanket Shield TFC
INPUT VARIABLES Armour : 0.100 m

Aspect ratio A (R/a) 3lanket : 1.

Elongation K Shield : 0.100 &

Maximum Magnetic field By " A ;

Blanket thickness b ‘ S RS T 2

Electrical power output Pg J ess : 3.541 m

Neutron wall loading Py, SSSSSSSSSISSSS ical parameters
R ” o | : :

Plasmatemperature T
H-mode enhancement factor H

— - 2a

Arpc  Agpjeld ABlanketr AArmor Asrmor  Aplanket  Asnieta  Arrc 3.000
2.00 ey -
= Wi 1000.
— BIBr
Transformer coils 175 4 o
— qlq

Designed tokamak
1.50

1.25 A

100 Q-parallel : 513.03 MW-T/m

[ avg : 20.00 keV

0.75 1 n_avg : 1.06 20 #/m”3
p_avg : 8.39 atm
|

Vertical field coil 0301 —
Pisama current | 0251 SRR
Plasma Toroidal field coll gy i
Magnetic field line! 0,00 Neoclassical
. . ' 12 13 14 15 16 17 T
a[m] &
Design of the tokamak determined

Cost params




Step 2: Implementation of a RL based Design Optimization Code

INPUT VARIABLES

Aspect ratio A (R/a)
Elongation K

Maximum Magnetic field B
Blanket thickness b

Electrical power output Pg
Neutron wall loading Py,
Plasmatemperature T

H-mode enhancement factor H

Input parameters (Action)

Designed reactor

Transformer coils
-

Plsama current

Plasma Toroidal field coll
Magnetic field line

V/E;vfmnment

Y
\_ Re War, a
Interpreter

5 [0 O]
@_’- Lé)_

Agent

Action

Deep Reinforcement Learning
Decision making = Optimal design parameters estimation

-

Simulation result (Next state)

Small reactor size : cost reduction
TBR > 1: Fuel-efficient
High Q (Ignition condition)
Avoidance of the operation limits
= Density limits
= Beta limits

= Safety-factor >2
= Neo-classicial bootstrap current > Operational requirement

4

Reward = R(cost-params) + R(beta) + R(safety-factor) +
R(density) + R(TBR) + R(bootstrap) + R(Q-factor)




Reactor structure and configuration

Default structure design and configuration — fixed during the optimization

Tokamak structural design parameter

R

Core Armor  Blanket  Shield TFC _ , 4.473 m
(Major radius)
a
1.597 m
(Minor radius)
Agrmor 0.1cm
ﬂBlanket 1.276 m
Ashieta 0.1m
Arge 0.512 m
K 1.7
“—r >t > 4> 2a - >
Atrc  Ashield ABlanket AArmor Aarmor  ABlanket  Aspiela  ATrc

* Main concepts for our fusion reactor
* Liquid type blanket: Coolant + Tritium breeding + relatively simple design

* Avoidance of the operation limits + High Q-factor + TBR > 1 + Low volume for reducing cost
* D-Tfusion + ECRH & LHCD heating + H-mode plasma




Core Design

Plasma core profile:n, T, P

1 Profile effects on high Q subighited Tokamak Fusion Plasmas o

— pprofile
—— T-profile
— n-profile

e The Q-value clearly expresses its dependence on the radial profile of T,N,P -

~
o

e Same configuration for radial profiles of T,N,P referred from Friedberg et al.

e  Parabolic profiles with numerical coefficient

Normalized quantity
-
w

=3

T=T>1+u)(1-p%)" =2T(1 -p%), vp=1 N
p=p(l+)(l- /):)V" = 2.5p(1 - p:)3 e vy = 3/2
Vn = 1/2 %0 02 0.4 0.6 0.8 1.0

n=n(l+uy)(l- p:)"" = 1.5a(1 - p:)' % Normalized radius

1 Effect of elongation

w
o

Both of these advantages have been demonstrated experimentally
e Plasma current and elongation up to elongations of k = 2.35: Set initial K = 1.7 g
s
52.8
= Vertical elongation of the plasma cross-section brings the increased plasma current I K2+1
pn" ('5:2.6
= Due to the increase of plasma current, the energy confinement time can also increase 2 E
22.4
e Beta and elongation T RN NS

Plasma einngalitm

Fig 1. From F.Hofmann, Physical Review Letters, Volume 81,

= Vertically elongated and D-shape cross-section allow much high beta values than circular ones 14, 1998

I
- F
= Troyon beta limit: High elongation plasma allow the beta value higher Bm =< Bn aB



Blanket Design

Breeder design and material

= Materials : liquid-type

O

O O O O O O

® Structures B

Lithium leads (Li17Pb83)

Versatile: Coolant + Tritium breeding

Lead : Neutron multiplier

Corrosion: middle

Chemical stability: less than other liquid materials

Inboard shield thickness reduction / but the thickness of the blanket may increase
Structures for additional coolant system would not be necessary

Cover
Stiffening grid
Breeder unit

Po-17L1intemal pipes
Back plate 2

Structure type of TBM: CLAM designed by EU Py
Breeder Inlet / Outlet: 300 / 480
Breeder Maximum temperature: 543 + 273 K -> High enough ..

Vertical key way

Breeder coolant pressure drop : less than 0.8 MPa

He inlet pipe

TBR :0.43 -> using lead as a multiplier ———

Stiffening rod bolt

He inlet pipe

Pb-17Li outlet pipe+manifold

TABLE I Physical properties of eutectic LiPb compared
with other possible breeding materials.

Liquid Li Lij7Pbgs Flibe LixgPbgg
Breeder
Melting 180 235 459 320
Point (°C)
Density 048 898 20 6.0
(g/enr’) 873K
Li Density 048 0.061 0.28 0.09
(g/enr’) 873K
Breeding Good Fauly good Neutron Neutron
ey multipler multipler
property required required
Chemical Active Middle Almost Almost
stability stable stable
Corrosion Severe Middle HF exist ?
severe
Tritium HT, T: HI.T: HT.T: TF HT, T:
release form
Trtium solubility | Veryhigh | Very low Verylow | Mddle
(atom fracPa™’ 7.49x10” 1.93x10° HT/T: 2x107-
T=873K) 1.77x10™ 1x10°
TF
1.77x10™"
Tritium Relatively | Relatively Relatively | Relatively
diffusivity order lugh high high high
(m%/s) (873K) 10° 10° 10° 10°
Thermal Li>Li3oSngy> L1;7Pbg; > Flibe
conductivity
Dynamic Flibe>Liy,Sngy~LijsPbg; >Li
viscosity

Table 2. From A Fraile, Molecular dynamics simulations of
lead and lithium in liquid phase




Armor and Shielding

Armor design and material

= Material: Tungsten
o Thickness: 10 cm

o Good resistance for physical, chemical sputtering

o Tungsten exhibit pronounced surface morphology changes under He plasma exposure

o High radiational loss can be occurred due to high atomic number and induce instabilities

o Tungsten surface energy limit : 0.5MJ/m~”2

Shielding design and material
= Material: Graphite

O

O
O
O
O

Thickness : 10cm

Neutron reflector and moderator for shielding the materials (TF coil)

Located between the blanket and

TF coils

Good neutron-moderating properties and availability in large quantities
Neutron reflection outside the blanket : enhancing TBR

Typical densities of carbon and graphite products.

Table 2

Vaporization data for carbon [20].

Material Bulk density, g/cm3 Temperature, K Pressure, atm
Pyrolytic carbon 1.2-2.2 2000 1.31 X 10710
Single crystals (theoretical density) 2.26 2500 1.05 X 1076
Nuclear graphite-moderator and reflector 1.5-1.7 3000 538X 1074
Porous electrocarbons and graphites 0.6-1.3 3500 530X 1072
Carbon felt 0.08-0.17 3800 1.0

Table 2 and 3. From D.E.Baker, Graphite as a neutron moderator and reflector materials

Plasma I I
2 e Plasma

% o

(5 . - )

® Reflection g boundary
@
< >
@ <

Recycling
o« e .I O
PR )
O
_

S
‘5‘
3
I.:
]
)
=

Unit Celk

a- 24612 #0.0001 A
b-L72a

© = 67079 £0.0007 A
Volume = 35,190 A>
Atoms per Unit Coll - 4

Crystal Density - 2. 266 glem®

Fig 2. From D.E.Baker, Graphite as a neutron moderator
and reflector materials



TF coils and PF coils

Plsama current

Magnetic field line

Plasma

Transformer colls

TF coil thickness
¢ = Ro{2(1— £5) — [(1 — 5)? — e = [(1 - &)? —Ell/z}

\4 \ 4

Tensile Current
Strength Density

Common steel Ref. c=0.97 [m]
Maximum Tensile Strength : 600 [MPa]
Maximum current density : 20 [MA/m?]

/ N

2800 Maraging Steel Ref. c = 0.66 [m] HTS coil Ref. c=0.44 [m]
Maximum Tensile Strength : ~ 2700 [MPa] Maximum current density : ~ 200 [MA/m?]

Vertical field coil

Toroidal field coll

TF, PF coils
CAN BE MADE THINNER!




Heating and Current Drive Sources

Heating and Current Drive — ECRH and ICRH

= ECRH

o Functions

o Plasma startup

o Heating for access to H-mode
o q profile control

o CD for steady-state

o Requirement

= LHCD

o Frequency : ~¥200GHz

o Power : determined by tokamak design
o Gamma:0.15

o Functions

o Current is driven by lower hybrid waves in our cases
o High efficiency

o Requirement

o Considered coupling of the edge plasma and generator power : 0.4
o P>4MW -> no experiment has ever coupled ICRF power into an H-mode

o Efficiency of LH klystrons : ~ 50%
o Power : determined by tokamak design
o Gamma:0.3-04

InpepneR
Pdep

major radius R

Nlep = deposition power of the beam P,

e e A N L B
FITER T, =15 keV ]

04 |-
[D.Z,4=2,p =05

12.5 keV |

0.3 10 keV -

7.5 keV |

0.2
5 keV -

0.1

nep / (10%° AWIM?)

1 1 1 s |
1000 1200 1400

D Energy / (keV)

0.0 1 1 s | 1 1 " 1
0 200 400 600 800

ITER: 2 MA current drive! (33 MW heating power)

Wall-plug to coupled CD efficiency
power efficiency (DEMO-like plasmas)
CONVERSION COUPLING PHYSICS
(Technology) (Physics)
NNBI Low (20-30%) high high
ICRH Medium (40-50%) low-medium medium
LHCD Medium (40-50%) medium high
ECRH Low-Medium (2040%)  high low-medium



Finding the optimal engineering parameters

Design optimization with single-step reinforcement learning

1 Single-step reinforcement learning and designh optimization

e Policy gradient method to find out the best design choice of the tokamak

e Control parameters: H, armor thickness, T, betan, elongation, aspect ratio, B-field, RF recirculated efficiency, electric power

e Conventional optimization method: hard to find out the optimal configuration (Multi-objective + High dimensional space)

QObservationg ........................................................................................................!.(:Ql.s.o.q(‘.‘
s -~ [EE)
| Initial state Observation Agent Actions Environment Reward Agent
. Reward Figure 4: Degenerate reinforcement learning framework used in this paper. One
Environment Agent ~ 3 ‘ 3 S i 3
episode consists of a single control from the agent: the same initial observation is pro-
vided to the agent at the start, which in return provides an action to the environment. The

environment returns a reward value to the agent, and the episode is terminated.

Single-step PPO
Finding the best design . . o
parameters By customizing tl'1e rev'va rd function, we can optimize
our tokamak design with respect to any
design strategy!

Computation code for design
parameters of the tokamak

Actions

Reward = R(cost-params) + R(beta) + R(safety-factor) + R(density) + R(TBR) + R(bootstrap) + R(Q-factor)

1 How to apply

e Definition of the custom rewards that represent the objectives (Cost + TBR + Operation limits + Q-factor)

e Training the policy network to learn the optimal policy to determine the best control parameters



Finding the optimal engineering parameters

Reward engineering for satisfying stabilities + maximum performance

1 Stability
e Kinkinstability
e Troyon beta limit

e Greenwald density limit

1 Desigh Performance

e High beta
e Low cost (proportional to volume)

e Bootstrap current ratio

R =axX Singid(
Xlimit

Ry =a X Sigmoid<

Xscale

— 1) ~+ Rfail X 9(1 —

)

Xlimit

)



Design Optimization Results

Comparison between the reference (Friedberg) and the optimized reactor

Geometric info Geometric info
| Major radius R : 5.346 m | Major radius R : 4.630 m
| Minor radius a : 1.337 m | Minor radius a : 1.543 m
| Armour : 0.900 m | Armour : 0.100 m
| Blanket : ©.899 m | Blanket : 1.276 m

|

|

|

| Shield : 0.100 m Shield : 9.100 m

| TF coil : 0.954 m TF coil : @.522 m 10 , ,

| total thickness : 3.289 m total thickness : 3.541 m e e
============== Physical parameters ============== ============== Physical parameters ============== —— Lawson criteria (Q=10)

| Magnetic field : 13.000 T | Magnetic field : 16.000 T . ] —:'#§;;:g:zzzsﬁﬂﬁmkevem
| Elongation : 1.700 | Elongation : 1.700

| Aspect ratio : 4.000 | Aspect ratio : 3.000

| Thermal efficiency : 0.400 | Thermal efficiency : ©.400 ~

| Electric power : 1000.000 MW | Electric power : 1000.000 MW ? 6

| TBR : 1.153 | TBR : 1.362 g

| beta : 3.595 | beta : 6.034 =

| tau : 0.917 s | tau : 1.159 s .S

| Ip : 14.805 MA | Ip : 15.345 MA gj 1

| g9 : 3.398 | q : 3.855 =

| f_bs : 0.612 | f_bs : 0.534

| Q-parallel : 558.25 MW-T/m | Q-parallel : 513.03 MW-T/m 24

| T_avg : 14.00 keV | T_avg : 20.00 keV

| n_avg : 1.43x10720 #/m"3 | n_avg : 1.09x10720 #/m™3

| p_avg : 7.67 atm | p_avg : 8.39 atm

=============== Operation limit =============== Operation limit 0 o e R 20 100
| Greenwald density : 2.495, operation density : 1.426 | 0 | Greenwald density : 2.@51, operation density : 1.092 | C T(unit : keV

| g-kink : 2.00@, operation q : 3.398 | 0 | g-kink : 2.000, operation q : 3.855 | 0

| Troyon beta : 4.007, operation beta : 3.595 | 0 | Troyon beta : 6.307, operation beta : 6.834 | 0

| Neoclassical f_bs : @.464, operation f_bs : 0.612 | X | Neoclassical f_bs : 0.651, operation f_bs : ©.534 | 0

| Lawson nTau : 2.507 , operation n*Tau: 1.308 | X | Lawson nTau : 1.812 , operation nxTau: 1.266 | X

| Cost params : @.756 | Cost params : @.757




Design Optimization Results

Comparison between the reference (Friedberg) and the optimized reactor
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